

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

PHOTOCHEMICAL DEGRADATION OF WASTES OF TEXTILE INDUSTRIES

THESIS Submitted in fulfillment of M.Sc. Degree in Chemistry (Photochemistry)

Presented by

Mai Ezz El-Den Ahmed B. Sc. (Chemistry – Biology)

To

National institute of Laser Enhanced Sciences
Department of Environmental, Photochemical and
Agriculture Applications
Cairo University
Egypt

2004

SUPERVISORS

Prof. Dr. Mahmoud Hashim Abdel-Kader

President of German University in Cairo (GUC)

Dr. Alsayed Abdel-Majiued Al-Sherbini

Lecturer of Photochemistry National Institute of Laser Enhanced Sciences (NILES), Cairo University, Egypt

Dr. Mohamed El Zarka

Senior Advisor to the Ministry of State for Environmental Affairs

CONTENTS

Acknowledgment

Abstract

CHAPTER 1	INTRODUCTION

1.1 INTRODUCTION	1
1.2 Brief on the history of dyeing	2
1.3 Chemical structure & properties of dyes	2
1.4 Azo -colorants in textile dyeing and printing	5
1.4.1 Azo-colorants Characterization property	5
1.4.2 Manufactore of azo- colorants	6
1.4.3 Azo-dyestuffs and azo-pigments on the market	7
1.5 Environmental Hazard Assessment of sulfonated Azo-colorants	8
1.6 Advanced Oxidation processes(AOPs)	10
1.9.1 Types of APOs	11
1.6.1.1 VUV photolysis	12
1.6.1:2 UV /Oxidation processes	13
1.6.1.2a UV.photolysis of H ₂ O ₂	14
1.6.1.2b UV photolysis of O ₃	14
1.6.1.2c Photo-Fenton Process	15
1.6.1.3 Photolysis of H ₂ O ₂	16
1.6.1.4 Sansitizied ADO museum	17

1.6.1.4a Dye Sensitized AOP processes	17
1.6.1.4b Semiconductor-sensitized APO processes	17
1.7 Semiconductor Nanoclusters	23
1.7.1 Metal Nanoclusters	24
1.7.2 Radiation Induced Charge Transfer process in oxide	
nanoparticles	24
1.7.3 Radiation Chemical and Photochemical process on	
semiconductor surfaces	25
1.7.4 Types of Semiconductors nanoclusters	26
1.7.4a Dye Capped Semiconductor Nanoclusters	26
1.7.4b Composite Semiconductor Nanoclusters	26
1.8 Photodegradation, Photomineralization & photocatalystes of	
organics and inorganics in waste water	27
1.8.1 Photodegradation of organics catalysed by TiO2 semic.	27
1.8.2 Photocatalytic degradation using prepared semiconductors by	40
Sol-Gel	
1.8.3 Photocatalytic degradation using Ozone	46
1.9 preparation and characterization of TiO ₂ -SiO ₂ & V ₂ O ₅ -SiO ₂	49
1.10 Water Pollution sources and characteristics of Textile effluents	52

Aim of the work

CHAPTER 2 METHODOLOGY

A Materials	56
B Instrumentation	57
C Methods	61
CHAPTER 3 RESULTS	
3.1 Spectroscopic Characterization of direct red 23 dye	66
3.1.1 Spectroscopic Characterization at different pH	66
3.1.2 Determination of the Adsorption Coefficient	69
3.2 Photodegradation of direct red 23 dye	70
3.2.1 Photostability	70
3.2.2 Heterogeneous Photodegradation by using of semiconductors	73
titania silica (TiO ₂ SiO ₂₎	
3.2.2.1 Effect of the pH of the medium	73
3.2.2.1 A Neutral media	
3.2.2.1.B Acidic & Basic media	
3.2.2.2 Effect of absence of Aeration (Oxygen Concentration)	79
3.2.2.3 Effect of light fluence rate	79
3.2.2.4 Effect of Semiconductor TiO ₂ SiO ₂ concentration	80
3.2.2.5 Effect of light sources	83

3.2.2.5.1.Effect of Nd-Yag laser (532 nm)	83
3.2.2.5.2. Nd-Yag laser (355 nm)	83
3.2.2.5.3 Effect of Ar laser (488 nm)	86
3.2.2.5.4 Effect of He-Cd laser (328 nm)	90
3.2.2.5.5 Effect of Sun light	93
3.2.2.6 Effect of Metal ions	95
3.2.3 Heterogenous Photodegradation by using of semiconductors	97
titania silica (V ₂ O ₅ SiO ₂₎	
3.2.3.1 Effect of the pH of the medium	97
3.2.3.1 A Neutral media	
3.2.3.1.B Acidic & Basic media	
3.2.3.2 Effect of absence of Aeration (Oxygen Concentration)	101
3.2.3.3 Effect of light fluence rate	102
3.2.3.4 Effect of Semiconductor V2O5SiO2 concentration	103
3.2.3.5 Effect of light sources	106
3.2.3.5.1. Nd-Yag laser (532 nm)	106
3.2.3.5.2. Nd-Yag laser (355 nm)	106
3.2.3.5.3 Ar laser (488 nm)	109
3.2.3.5.4 He-Cd laser (328 nm)	111
3.2.3.5.5 Sun light	114
3.2.3.6 Effect of Metal ions	116

33 Homogenous Photodegradation using H ₂ O ₂ (comparative method)	118
3.3.1 H ₂ O ₂ / Dark	118
$3.3.2 \; H_2O_2/\; UV-V$	120
3.3.3 pH effect	122
3.2.4 Photodegradation products	123
3.2.5 Photochemical quantum yields (Qc)	124
CHAPTER 4 DISCUSSION & CONCLUSION	130

Summary

References

Arabic Summary

ABSTRACT

Recently, the utilization of semiconductor particulate systems as a reactive heterogeneous medium has been reached to a tremendous growth in carrying out photochemical transformations of organic and inorganic compounds. One of the particular areas of applied research for the application of the semiconductors is the degradation of textile dyes. Attractive practical applications include, particularly, in terms of photo-catalytic oxidation of dyes.

Reactive inorganic oxide surfaces can participate in photochemical reactions by absorbing the incident photons and transferring charge to an adsorbed molecule.

techniques (AOT) using Advanced oxidation by semiconductors as coupled TiO2-SiO2 & V2O5SiO2 has been applied. Light energy from ultraviolet radiation in the form of photons excites the electrons on the surface of titanium atoms, moving them from "the valence band to the conductance band". The result of this energy change is the formation of holes in the surface of the titanium atom, and free electrons which are now available to form hydroxide, superoxide or other radicals, which can oxidize organic chemicals, or reduce metal species. The semiconductors powder is added to the solution of a given chemical dye and exposed to ultraviolet light, either from natural sunlight or commercial lamps. Photo-catalytic detoxification process consists on the utilization of the wavelength shorter than 400nm by using different laser sources with different wavelengths to promote a strong oxidation reaction. This reaction took place when such UV radiation photo excited a semiconductor catalyst in the presence of oxygen. In this circumstances hydroxyl

radicals which attack oxidizable contaminant dye are generated, producing a progressive breaking of molecules yielding only to carbon dioxide, water and dilute mineral acids.

The aim of this work is to demonstrate the feasibility of the photochemical degradation process using the direct red dye 23 as well as to investigate the photochemical and photophysical characteristics of the photo-catalytic reaction.

CHAPTER 1:

INTRODUCTION