

OPTIMUM SIZING & MONITORING AND PERFORMANCE OF PHOTOVOLTAIC BASED WATER PUMPING SYSTEM

By

Eng. Amira Shaban Abd-ElMohsen Omer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

OPTIMUM SIZING & MONITORING AND PERFORMANCE OF PHOTOVOLTAIC BASED WATER PUMPING SYSTEM

By

Eng. Amira Shaban Abd-ElMohsen Omer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Abdalla Sayed Ahmed Hanafi

Hatem Omar Haridy Kayed

Professor
in Mechanical Power Engineering Department
Faculty of Engineering,
Cairo University

Assistant Professor
in Mechanical Power Engineering Department
Faculty of Engineering,
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

OPTIMUM SIZING & MONITORING AND PERFORMANCE OF PHOTOVOLTAIC BASED WATER PUMPING SYSTEM

By

Eng. Amira Shaban Abd-El Mohsen Omar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mahmoud Abdel-Fattah El-Kady Member

Prof. Dr. Abdel -Wahed Fouad El-Dib Member

Prof. Dr. Abdalla Sayed Ahmed Hanafi, Thesis Advisor and Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

Engineer: Amira Shaban Abd-ElMohsen Omer

Date of Birth: 7/07/1983 **Nationality:** Egyptian

E-mail: <u>eng_amiraomar@hotmail.com</u>

Phone: 00201006975940

Address: 91 St, Hadaq Elqoba, Egypt

Registration Date: 01/10/2010 **Awarding Date:** / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Abdalla Sayed Ahmed Hanafi

Dr. Hatem Omar Haridy Kayed

Examiners: Prof. Dr. Mahmoud Abdel-Fattah El-Kady

Prof. Dr. Abdel -Wahed Fouad El-Dib Prof. Dr. Abdalla Sayed Ahmed Hanafi

Title of Thesis: OPTIMUM SIZING & MONITORING AND PERFORMANCE

OF PHOTOVOLTAIC BASED WATER PUMPING SYSTEM

Keywords: PV-pumping ,Optimum sizing, Renewable Energy

Experimental measurement

Summary:

In stand-alone pumping systems the incorporation of photovoltaic systems in water pumping applications is thought to be one of the most popular and ideal uses of solar energy exploitation, this is due to especially the common allegation of coincidence between insolation and water demand. This study intends to investigate and design a PV power system for water pumping application and develop an appropriate numerical algorithm properly adapted to analyzing a typical photovoltaic water pumping installation. Also, to provide the I-V and P-V characteristics for various insolation at constant temperature (T=25°C) and different temperature values at constant insolation (1000W/m²) by using MATLAB/SIMULINK.

The present measurements are used to show how far the pv- power generation could be matched with load demands and battery state of charge. It also investigates the total efficiency of the installation and the water quantity pumped on a daily basis for a selected time period.

An economical study of the photovoltaic pumping system is carried out compared with a pump driven by a gasoline engine.

ACKNOWLEDGMENT

Praise be to Alllah, the knower of all, who supported me at all over my life, taught me what I did not know and bestowed me the ability to accomplish this work.

My deepest gratitude to Prof. Dr. Prof. Abdalla Sayed Ahmed Hanafi for his continuous help and kind supervising effort Useful notices, support and caring through my work on the master thesis.

My deepest gratitude and appreciation to Dr. Hatem Omar Haridy Kayed. my direct supervisor, for his significant assistance, valuable, and continuous guidance throughout this work.

I would like to thank all my family especially my father and my mother whom always a dies and encourage me to do my best and to whom I dedicate this thesis.

Most Sincere thanks to all members in mechanical engineering department for their sincere cooperation and assistance.

Special thanks go to, Eng. Ahmed Ibrahim, Eng. Ahmed Hamed, Eng. Mohammad Mortada

DEDICATION

I dedicate this thesis to my father and mother who had always been my eternal source of encouragement for me. I also dedicate this work to my dear brothers Ahamed and Mohammad and my dear sisters Abeer and Shereen who always support and believe in me.

Table of Contents

ACKNOWLEDGMENTiv
Dedicationv
Table of Contentsvi
List of Tablesx
List of Figuresxi
Nomenclatures xiv
ABSTRACTxviii
INTRODUCTION
1.1 History of photovoltaic Devices
1.2 The Solar PV Market Worldwide
1.3 The Solar Energy Applications in Egypt
1.4 Advantages and Disadvantages of different stand- alone type water pumping
systems5
1.5 The Basic of Photovoltaics
1.6 Crystalline silicon 6
1.6.1 First-Generation PV Technologies: Crystalline Silicon Cells
1.6.2 Second-Generation PV Technologies: Thin- Film Solar Cells
1.6.3 Third-Generation PV Technologies
1.7 Solar -Powered Water Pumping System Configurations
1.7.1 Battery-Coupled Solar Pumping Systems 9
1.7.2 Direct-Coupled Solar Pumping System

1.8	3 The	esis Outline	11
LITE	RATU	JRE REVIEW	13
2.1	l PV	Pumping System Investigated Numerically and Experimentally	13
2.2	2 Sur	mmary and Scope of Present Work	28
MAT	THEMA	ATICAL MODEL OF THE PV PUMPING SYSTEM	29
3.1	Mo	deling of PV Cell	29
3.2	The	e accurate model	32
3.3	3 Mo	dule Model	32
	3.3.1.	Current input module Model	34
	3.3.2	Application example (PV array)	34
3.4	4 Nu	merical Investigation for the Solar Radiation	35
	3.4.1	Estimation of Clear-Sky Radiation	35
	3.4.2	Ratio of Beam Radiation on Tilted Surface to that on Horizontal Surface	37
3.5	5 Des	sign of Components	38
	3.5.1	Load Characteristics (Profile)	38
	3.5.2	Sizing water pumping system	38
	3.5.3	Selection of the PV generator	39
	3.5.4	Selection of the Battery Banks	40
	3.5.5	Inverter	41
3.6	5 PH	OTOV-IV Pumping Algorithm	41
	3.6.1	The Algorithm Procedure	42
EXP	ERIMI	ENTALSET-UP	44
4.1	Inti	oduction	44
4.2	2 Des	scription of the PV Pumping System	44

4.3	The Main Components of the System Used	47
4.3	3.1. Storage Tanks	47
4.3	3.2. AC Water Pump	48
4.3	3.3. Photovoltaic Modules	49
4.3	3.4. Modules Supporting System	49
4.3	S.5. Solar Battery	50
4.3	3.6. Inverter with Charger	51
4.3	3.7. Clamp Meter	52
4.4	Measuring Instruments	52
4.4	4.1. Solar Radiation Measurements	52
4.4	4.2. Weather Parameter Measurement	52
4.4	1.3. Flow Measurements	53
4.4	1.4. Pressure Gauge Measurements	53
4.4	4.5. Output Power Measurements	54
4.4	4.6. Battery's electrical quantities measurements	54
4.5	Experimental Procedure	55
4.6	Methods of Calculations	56
FEASIB	BILITY STUDY OF PV SYSTEM	58
5.1	The Economic Analysis for PV System	58
5.1	.1. PV System	58
5.1	.2. Gasoline Generator-Pump System	59
RESUL	TS AND DISCUSSION	62
6.1	Discussion of the experimental results	62
6.2	Solar radiation and Meteorological data	62

6.3	The output power for photovoltaic arrays vs time	65
6.4	Flow Rate Measurement for Pump vs Time	66
6.5	The Efficiency vs. Time	67
6.6	Characteristic curve of solar water pumping system	69
6.7	The Battery's Measurement	69
6.8	Numerical Investigation Discussion	71
6.9	The Algorithm Output Results	74
CONC	CLUSIONS AND FUTURE WORK RECOMMENDATIONS	76
7.1	Conclusions	76
7.2	Recommendations for Future Work	77
REFEI	RENCES	78
Appen	dices	81
App	pendix A: The MATLAB Algorithm Model Code	81
App	pendix B: The Storage Tanks	90
App	pendix C: The AC Water Pump	92
App	pendix D: Photovoltaic Modules	94
App	pendix E: The Solar Battery	97
App	pendix F: The Inverter	100
App	pendix G: The Weather parameter Measurement	102
App	pendix H: The Gasoline Pump System	106

List of Tables

Table 1.1: PV powered, Diesel powered, vs. Windmill [6]	5
Table 3.1: Correction Factors for Climate Types [29]	36
Table 3. 2: Electricity Consumption for the Pump Period	38
Table 3. 3: Head and Flow Capacity for Pumps Sheikh Zayed	38
Table 4. 1: Motor Pump Specification	48
Table 4. 2: Photovoltaic Generator Specification	49
Table 4. 3: Installation Condition of the Experimental Setup	50
Table 4.4: Inverter Specification	51