

معهد الدراسات العليا للطفولة قسم الدراسات الطبية

قيمة الموجات فوق الصوتية الوظيفية للقلب في علاج الاطفال حديثي الولادة على جهاز التنفس الصناعي

رساله للحصول على درجة دكتوراه الفلسفة في دراسات الطفولة (صحة وتغذية الطفل)

مقدمة من الطبيبة/ شيماء عبد الخالق محجد هاشم ماجستير طب الأطفال

تحت إشراف

أ.د نيره اسماعيل عطيه استاذ طب الأطفال وحديثى الولادة معهد الدراسات العليا للطفولة جامعة عين شمس أ.م. د. هبة الله محمد عطيه استاذ مساعد امراض القلب والأوعية الدمويه كلية الطب

أ.د هشام عبد السميع عوض استاذ طب الأطفال وحديثى الولادة كلية الطب جامعة عين شمس أ.د ايمان عبد الوهاب العشماوى استاذ صحة الطفل قسم صحة الطفل المركز القومى للبحوث

د. هاله جابر الربيعى زميل وحدة الرعاية المركزة لحديثي الولادة بمستشفى امراض النساء والتوليد كلية الطب جامعة عين شمس

> معهد الدراسات العليا للطفولة جامعة عين شمس 2017

The Value of Functional Echocardiography in The Management of Mechanically Ventilated Neonates

Thesis Submitted for fulfilment of PhD in childhood studies (Child Health and Nutrition) Medical Studies Department

 $\mathcal{B}_{\mathfrak{I}}$

Shaimaa Abd Elkhalek Mohamed Hashem

M.Sc Pediartics- Ain Shams University Assistant Researcher- National Research Centre

Under Supervision

Dr. Hesham Abd Elsamie Awad

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Eman Abd Elwahab Alashmawy

Professor of Child health Department of Child Health National Research Centre

Dr. Nayera Ismail Attia

Professor of Pediatrics Department of Medical Studies Institute of Postgraduate Childhood Studies

Dr. Hebatulla Mohamed Attia

Assistant Professor of Cardiology Faculty of Medicine Ain Shams University

Dr. Hala Gaber Elrabei

Fellow in NICU Gynecology & Obestatric hospital Ain Shams University

Institute of Postgraduate Childhood Studies
Ain Shams University
2017

Acknowledgements

First and foremost, thanks and praise to ALLAH, most gracious and most merciful.

I would like to express my deep gratitude, thanks and respect to our eminent **Dr. Hesham Abd Elsamie Awad**, professor of pediatrics, Faculty of Medicine, Ain Shams University for granting me the privilege of working under his supervision and for his great encouragement and advice.

I wish to express my deep thanks and utmost gratitude to **Dr. Nayera Ismail Attia**, professor of pediatrics, Institute of Postgraduate childhood studies for her guidance, advices, fruitful suggestions, continuous revision of all the work, meticulous supervision without which this work would have never been accomplished.

No word can express my deep gratitude to **Dr. Eman Abd Elwahab Alashmawy**, professor of Child Health,

National Research Center for her great support and help.

I am greatly thankful to **Dr. Hala Gaber Elrabei**, Fellow in NICU, Gynecology and Obstatric hospital, Ain Shams University for her great effort, advice and kind help throughout this work.

Many thanks and deep appreciation to **Dr. Hebatalla**Mohamed Attia, Assistant Professor of Cardiology, Faculty

of Medicine, Ain Shams University for her great help and encouragement.

All love and appreciation to my friend and supervisor at the same time **Dr. Ghada Mahmoud Elkassass**, Assistant Researcher Professor of Child Health, National Research Center for her great support and faithful help.

I would like to thank all nurses and workers in NICU, Gynecology and Obstatric hospital, Ain Shams University for their help and cooperation especially during the practical part of this work.

All love and thanks to my patients, I wish them all the best of health.

Last but not least, I would like to express my gratitude and thanks to my family especially my mother, my father, my sister, my brothers, my husband and my kids Yahia, Nouran and Aly for their kindness, trust, unfailing support and much needed encouragement.

Shaimaa Hashem

Abstract

Background: Functional echocardiography for the neonates is a targeted bedside cardiovascular ultrasound that aiming to clinical evaluation and management of the current neonatal hemodynamic changes.

Objective: This prospective follow up study aimed at assessment of the hemodynamic changes in mechanically ventilated neonates, and determination of the correlation between ventilation settings and fECHO.

Methods: fifty mechanically ventilated neonates due to non-congenital respiratory problems underwent fECHO after 24 hours of mechanical ventilation. Thirty neonates continued on mechanical ventilation and were available to 48 hours fECHO follow up.

Results: A 24 hours fECHO examination showed; highly significant negative correlation between the RVO and the PIP & MAP (P value <0.01) and significant negative correlation with PEEP (P value <0.05). A significant negative correlation between the LVO and the MAP (P value <0.05). A highly significant negative correlation between SVC flow and PIP & MAP (P value <0.01), while no significant correlations found at 48 hours fECHO examination (P value >0.05). A 24 hours fECHO examination showed 14 patients had significant PDA. There was highly significant increase (P value <0.01) in PDA diameter, LA/AO ratio, LVO/SVC ratio, LPA, significant increase (P value <0.05) in LVO, and highly significant decrease (P value <0.01) in SVC flow of

significant PDA patients more than non-significant PDA or closed patients.

Conclusion: fECHO is an extension of the bedside clinical assessment for neonatal hemodynamic changes, it assisted in many decision taking such as closure of significant PDA, surfactant replacement therapy, increasing total fluid intake, management of pulmonary hypertension.

Keywords: fECHO in neonates, PDA with fECHO, mechanical ventilation.

Contents	
List of Abbreviations.	II
List of Tables	IV
List of Figures.	IX
Introduction	1
Aim of the study	5
Review of Literature	
Chapter one:	
Physiology of Neonatal Circulation	6
Chapter two:	
Functional Echocardiography	23
Chapter three:	
Mechanical Ventilation	61
Chapter four:	
Cardiovascular Effects of Mechanical ventilation	
Chapter five:	
Respiratory and Circulatory Management Based on	
Functional Echocardiography	
Patients and Methods	
Results	
Discussion	
Summary	
Conclusions.	
Recommendations	
References	
Appendix	
Arabic Summary	

List of Abbreviations

Abbreviation	Term
AO	Aorta
СО	Cardiac output
CPAP	Continuous positive airway pressure
ЕСНО	Echocardiography
ECMO	Extracorporeal membrane oxygenation
EF	Ejection fraction
fECHO	Functional Echocardiography
FiO ₂	Fraction of Inspired Oxygen
FS	Fractional shortening
HR	Heart rate
IVC	Inferior vena cava
LA	Left atrium
LPA	Left pulmonary artery
LV	Left ventricle
LVO	Left ventricular output
MAP	Mean airway pressure
MAS	Meconium aspiration syndrome
NICU	Neonatal intensive care unit
O ₂ Index	Oxygenation Index
PA	pulmonary artery
PDA	Patant ductus arteriosus
PEEP	Positive End-Expiratory Pressure

List of Abbreviations

Abbreviation	Term
PFO	Patent foramen ovale
PIP	Peak Inspiratory Pressure
PPHN	Persistent pulmonary hypertension
PVR	pulmonary vascular resistance
RA	Right atrium
RDS	Respiratory distress syndrome
RR	Respiratory rate
RV	Right ventricle
RVO	Right ventricular output
RVSP	Right ventricular systolic pressure
SVC	Superior vena cava
SVR	Systemic vascular resistance
$T_{\rm E}$	Expiratory time
T _I	Inspiratory time
TTN	Transient tachyapnea of the newborn
V_{T}	Tidal volume

List of Figures

	Figure	Page
Figure (1):	Fetal circulation.	10
Figure (2):	Transition from Fetal to neonatal circulation.	12
Figure (3):	Echocardiography machine.	27
Figure (4):	Common echocardiographic windows and views used in functional echocardiography.	39
Figure (5):	Hemodynamic and pathologic consequences of significant PDA.	42
Figure (6):	Two-dimensional image of PDA.	44
Figure (7):	Color Doppler image of a PDA with left-to-right flow.	44
Figure (8):	Pulsed-wave Doppler measures blood flow across the AO valve.	51
Figure (9):	Shows measuring of LVEDD & LVESD to calculate SF.	58
Figure (10):	Algorithm for treatment of neonatal hypotension based on Echocardiographic finding (TMBU protocol 2006).	92
Figure (11):	Systolic blood pressure for neonates according to post conceptional age.	118
Figure (12):	Diastolic blood pressure for neonates according to post conceptional age.	119

Figure	
Figure (13): Diagram showing position of the	
transducer and the plane of the baby	123
to view the aortic arch.	
Figure (14): Echocardiography machine.	123
Figure (15): Flow chart for 50 patients involved in the study group and their follow up.	133
Figure (16): Sex distribution in the study group.	136
Figure (17): Maturity distribution in the study group.	136
Figure (18): X-ray for patient with grade II RDS.	138
Figure (19): X-ray for patient with grade III RDS.	138
Figure (20): X-ray for patient with meconium aspiration syndrome.	139
Figure (21): X-ray for patient with neonatal pneumonia.	139
Figure (22): The percentage significant PDA 24 hours post ventilator fECHO examination.	164
Figure (23): Flow chart shows the fate of patients with significant PDA.	165
Figure (24): The distribution of SVC flow values at 24 hours post ventilation fECHO.	171
Figure (25): Flow chart shows the distribution of patients with SVC flow below 55 ml/kg/min.	172

Figure		Page
Figure (26):	Flow chart shows the distribution of	173
	patients with SVC flow >55-70	
	ml/kg/min.	
Figure (27):	The percentage of patients who	
	received surfactant replacement	176
	therapy before 24 hours post	176
	ventilation fECHO examination.	
Figure (28):	Flow chart shows the fate of patients	
	received surfactant replacement	177
	therapy.	
Figure (29):	X-ray of a patient with severe	
	respiratory distress grade IV that	178
	received surfactant replacement	1/0
	therapy.	
Figure (30):	The correlation between RVSP and	
	FIO ₂ at 24 hours post ventilation	182
	fECHO.	
Figure (31):	The correlation between RVSP and	
	FIO ₂ at 48 hours post ventilation	182
	fECHO.	
Figure (32):	fECHO for patient no. (30), preterm,	
	gestational age 32 weeks,	
	complaining of RDS, shows subcostal	184
	view, color Doppler displaying left to	104
	right atrial shunt through patent	
	foramen ovale.	

	Figure	Page
Figure (33):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows colour Doppler displaying the tricuspid regurgitation jet.	184
Figure (34):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows continuous wave Doppler tracing to measure the peak velocity of the tricuspid regurgitation jet.	185
Figure (35):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows parasternal short axis view displaying PDA by colour Doppler.	185
Figure (36):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows ductal view displaying PDA by colour Doppler.	186
Figure (37):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows pulsed Doppler in the left pulmonary artery displaying diastolic flow.	186

	Figure	Page
Figure (38):	fECHO for patient no. (40), preterm, gestational age 33 weeks, complaining of RDS shows M- mode ECHO of the Aorta at the level of valve leaflets to measure the aortic and left atrial dimension.	187
Figure (39):	fECHO for patient no. (30), preterm, gestational age 32weeks, complaining of RDS, shows colour Doppler mapping high lighting the flow down of the Superior vena cava into right atrium.	187
Figure (40):	fECHO for patient no. (17), full term, gestational age 39 weeks, complaining of pneumonia, shows pulsed Doppler positioned at the junction of the SVC and the right atrium with S, D, and A waves[S; ventricular systole, D; early ventricular diastole, A; atrial systole].	188
Figure (41):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows modified parasternal long axis view seen by 2D image to measure minimum SVC diameter.	188

	Figure	Page
Figure (42):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows modified parasternal long axis view seen by 2D image to measure maximum SVC diameter.	189
Figure (43):	fECHO for patient no. (17), preterm, gestational age 29 weeks, complaining of RDS, shows parasternal long axis view displaying the ascending AO and the aortic valve in region where ascending aorta diameter measurements can be taken, the crosser indicates the aortic valve annulus at the hinge points of the aortic valve.	189
Figure (44):	fECHO for patient no. (37), preterm, gestational age 27 weeks, complaining of RDS, shows pulsed Doppler range gate was placed distal to the aortic valve in apical 5 chambers view modified to incorporate the full length of the ascending aorta.	190