Ain Shams University University College of Women (Arts, Science and Education) Physics Department

Synthesis, Characterization of ZnO Nanoparticles

Using Wet Chemical Technique for Dye Sensitized Solar Cells

By Hussam Subri Musleh For

Ph.D. Degree in Science (solid state physics)

A thesis submitted

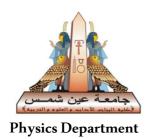
To

Physics Department

University College of Women (Arts, Science and Education)
Ain-Shams University

Under supervision of:

Prof.Dr. Hamdia Abd- El hamed Zayed


Professor of Solid State, Physics Dept., University College of Women (Arts, Science and Education)- Ain-Shams University

Prof.Dr. Nají M. Al-Dahoudí

Professor of material Science, Physics Dept., Al-Azhar University-Gaza

Dr. Hassan Tamous

Assistance Professor of Physical Chemistry, Chemistry Dept., Al-Azhar University-Gaza

APPROVAL SHEET

Name: Hussam Subrí Musleh

Scientific Degree: Ph.D. in science (solid state physics)

Tittle: Synthesis, Characterization of ZnO Nanoparticles
Using Wet Chemical Technique for Dye Sensitized Solar
Cells

Supervisors

Prof. Dr.
Hamdia Abd El-
Hamid Zayed

Prof. of Solid State Physics,
Physics Department Women's College for Arts,
Science, and Education
Ain Shams University

Prof. Dr. Naji M. Al-Dahoudi

Prof. of material Science, Physics Dept., Al-Azhar University Gaza

Dr. Hassan M. Tamous

Assistance Professor of Physical Chemistry, Chemistry Dept., Al-Azhar University-Gaza

(2018)

بسم الله الرحمن الرحيم

(اناكل شيء خلقناه بقدر)

القمر 49

Acknowledgment

In the name of ALLAH the most compassionate all praise be to ALLAH, the lord of the worlds; and prayers and peace be upon Prophet MOHAMMED.

Firstly, I must acknowledge my limitless thanks to ALLAH; the Ever-Thankful, for help and bless.

My deepest appreciation and sincere gratitude to my supervisors professor Prof. Dr. Hamdia Abd El-Hamid Zayed, Prof. Dr. Naji M. Al-Dahoudi and Dr. Hassan M. Tamous.

I am greatly indebted to them for all the efforts they have put in for the successful completion of this thesis.

I would also, like to thank my friend Mohamed Musleh, for his encouragement. I also extend my profound thanks to Physics Department Women's College Ain Shams University- Cairo, the department of physics and department of chemistry in Al-Azhar university- Gaza Palestine. Finally, I would like to express my sincere gratitude to Dr. Ahmed Ramzy, National Research Center-Cairo, for his kind help in EDX characterization.

Dedication

I dedicate my thesis to:

My parents who kept supporting me
throughout the process,

My loving wife

who stood by me in my difficult time, My Kids, Balssam, Sabri, Bassant and

Bayaan

My Brothers, sisters and uncles who

encouraged and supported me.

Hussam Musleh

Contents

	Acknowledgments	III
	Deduction	IV
	Contents	V
	List of figures	IX
	List of tables	XIV
	List of symbols	XVI
	Abstract	1
	Introduction	4
1-	Nanotechnology	4
2-	Solar cells	5
	CHAPTER I	
	Literature Review	
1-1	Literature review	8
1-2	Aim of this work	17
	CHAPTER II	
	Theoretical Aspects	
2-1	Materials of DSSC	18
2-1-1	Electrodes	18
2-1-1-1	Front electrode (FTO substrate	18
2-1-1-2	Back electrode (Platinum counter electrode)	19
2-1-2	Sensitizing dyes	19
2-1-2-1	Ruthenium complex	20
2-1-2-2	Metal-free organic dyes	21
2-1-3	Electrolyte	22
2-1-4	Operational principle of DSSC	24
2-3	The simple electrical model of a solar cell	26
2-3-1	The parameters of solar cell	27
2-4	X-ray diffraction studies (XRD)	30
2-5	Transmission electron microscopy (TEM)	32
2-6	UV-VIS absorption spectroscopy	33
2-6-1	Determination of optical band gap	34
2-7	Photoluminescence spectroscopy (PL)	35

	CHAPTER III	
	Materials & Experimental	
	Techniques	
3-1	Materials used in ZnO nanoparticle synthesis	36
3-2	Materials used in DSSCs fabrication	36
3-3	Techniques of preparation	37
3-3-1	simple preparations techniques	37
3-3-2	Reflux technique	39
3-3-3	Sol gel technique	41
3-3-4	Combustion technique	44
3-4	DSSC preparation	47
3-4-1	Cleaning of the FTO substrate	47
3-4-2	Preparation of ZnO electrode (FTO/ZnO/dye)	47
3-4-3	Preparation of redox	48
3-4-4	Assembly of DSSC	48
3-5	Investigation of the prepared DSSCs	50
3-5-1	X-ray diffraction studies (XRD)	50
3-5-2	Electron dispersive x-ray analysis (EDX)	50
3-5-3	High resolution transmission electron	51
	microscopy (HRTEM) analysis	
3-5-4	UV-VIS absorption spectra	52
3-5-5	Photoluminescence analysis	53
3-5-6	J-V measurements of DSSC	54
	Chapter IV	
	Results and Discussion	
4-1	Absorption spectra of Eosin B, Eosin Y and Rhodamine B Dyes	55
4-2	Pure ZnO Synthesized using Simple	
	precipitation technique	<i>56</i>
4-2-1	Synthesis of ZnO NPs at different aging time	56
4-2-1-1	Structural Identification	<i>56</i>
4-2-1-1-1	Energy Dispersive X-ray Analysis (EDX)	56
4-2-1-1-2	X –ray diffraction studies	<i>57</i>
4-2-1-1-3	HRTEM analysis of pure ZnO	61
4-2-1-2	Optical studies	63
4-2-1-2-1	UV-VIS absorption studies of pure ZnO	63
4-2-1-2-2	Photoluminescence spectroscopy	65

4-2-1-3	Photovoltaic studies	68
4-2-1-3-1	FTO/ZnO/Eosin B,/Pt	68
4-2-1-3-2	FTO / ZnO / Eosin Y, Rhodamine B / Pt	71
4-2-2	Pure zinc oxide at different pH value	73
4-2-2-1	Structural identification	73
4-2-2-1-1	X-Ray diffraction studies	73
4-2-2-1-2	HRTEM analysis of pure ZnO	77
4-2-2-2	Optical studies	79
4-2-2-2-1	UV-VIS absorption studies of pure ZnO	78
4-2-2-2	Photoluminescence spectroscopy	81
4-2-2-3	Photovoltaic studies	83
4-2-2-3-1	FTO/ZnO/Eosin B/Pt	83
4-2-2-3-2	FTO / ZnO / Eosin Y, Rhodamine B/ Pt	86
4-2-3	Pure ZnO NPs heated at 160 oC for	88
	different heating time in autoclave	
4-2-3-1	Structural identification ZnO NPs	88
4-2-3-1-1	X-ray diffraction studies	88
4-2-3-1-2	HRTEM analysis of pure ZnO	91
4-2-3-2	Optical studies of ZnO NPs	92
4-2-3-2-1	UV-VIS absorption studies	92
4-2-3-2-2	Photoluminescence spectroscopy of pure ZnO NPs	95
4-2-3-3	Photovoltaic parameters	97
4-2-3-3-1	FTO / ZnO / Eosin B / Pt	97
4-2-3-3-2	FTO / ZnO / Eosin Y, Rhodamine B / Pt	99
4-2-3-3-3	Open circuit voltage decay	101
4-2-3-3-4	Dye uploading	105
4-3	Pure and Cu doped zinc oxide synthesized using Reflux technique	106
4.3.1	Structural identification	106
4.3.1.1	Energy dispersive X-ray analysis (EDX)	106
4.3.1.2	X-Ray diffraction studies	106

4.3.1.3	HRTEM analysis of pure ZnO using reflux	112
	technique	
4-3-2	Optical studies	112
4-3-2-1	UV-VIS absorption studies of ZnO:Cu	112
4-3-2-2	Photoluminescence spectroscopy	115
4-3-3	Photovoltaic parameters	117
4-3-3-1	FTO / ZnO / Eosin B / Pt	117
4-3-3-2	FTO / ZnO / Eosin Y, Rhodamine B / Pt	119
4-4	Pure ZnO NPs using sol gel technique	122
4.1.1	Structural Identification	122
4.1.1.1	Energy Dispersive X-ray Analysis (EDX)	122
4.1.1.2	X –ray diffraction studies	123
4-4-1-3	HRTEM analysis of ZnO NPs	126
4-4-2	Optical studies	127
4-4-2-1	UV-VIS absorption studies	127
4-4-2-2	Photoluminescence spectroscopy	130
4-4-3	Photovoltaic parameters	132
4-4-3-1	FTO/ZnO/Eosin B /Pt	132
4-4-3-2	FTO / ZnO / Eosin Y, Rhodamine B / Pt	135
4-5	Pure ZnO synthesized using combustion	137
	technique	
4-5-1	Structural identification	137
4-5-1-1	Energy dispersive X-ray analysis (EDX)	137
4-5-1-2	X-Ray diffraction studies	138
4-5-1-3	HRTEM analysis of pure ZnO	141
4-5-2	Optical studies	143
4-5-2-1	UV-VIS absorption spectroscopy	143
4.5.2.2	Photoluminescence spectroscopy	145
4-5.3	Photovoltaic parameters	148
4-5-3.1	FTO/ZnO/Eosin B /Pt	148
4.5.3.2	FTO/ZnO/Eosin Y, Rhodamine B/Pt	150
	Conclusion	152
	References	154
	Arabic abstract	1

List of Figures

	CHAPTER I	
Fig. 1-1.	Three kinds of ZnO crystal structure, black and gray spheres denote Zn and O atoms respectively. (a) Wurtzite, (b) Rocksalt and (c) Zinc blende.	8
	CHAPTER II	
Fig. 2-1	Schematic design of free metal organic dyes (top), some examples of dyes building blocks (down).	21
Fig. 2-2	Operation principle of a dye-sensitized solar cell	25
Fig. 2-3	The assembly of the dye-sensitized solar cell	25
Fig. 2-4	Equivalent circuit of solar cell	27
Fig. 2-5	The typical J-V characteristics of a solar cell, in the dark and under illumination	28
Fig. 2-6	X-ray Diffraction in accordance with Bragg's Law	31
Fig. 2-7	Schematic for a double beams UV-VIS spectrophotometer	34
	CHAPTER III	
Fig. 3-1	Flow chart of ZnO NPs synthesized using simple precipitation technique	39
Fig. 3-2	Flow chart of pure and Cu doped ZnO nanoparticle synthesis using reflux technique.	41
Fig. 3-3	Some steps of ZnO nanoparticles synthesis using sol gel technique	43
Fig. 3-4	The flow chart of ZnO synthesis using sol gel technique	43
Fig. 3-5	Flow chart of pure ZnO nanoparticle synthesized using combustion technique	45
Fig. 3-6	The changing of fluffy foam color of ZnO synthesized using combustion technique at different urea concentration	46
Fig. 3-7	Assembling the dye sensitized solar cell	49

Fig. 3-8	Philips Expert, X-ray diffraction (XRD) setup.	50
Fig. 3-9	Field Emission Scanning Electron Microscope setup	51
Fig. 3-10	High resolution transmission electron microscopy: (JEM-2100), JEOL	52
Fig. 3-11	Shimadzu UV-1601 PC, UV-VIS spectrophotometer	53
Fig. 3-12	Spectroflurometer model SPF-200 Setup	53
Fig. 3-13	J-V measurement setup	54
	CHAPTER IV	
Fig. 4-1	The absorption spectrum of the used dyes dissolved in pure ethanol	55
Fig. 4-2	EDX spectrum of pure ZnO NPs	56
Fig. 4-3	X-ray diffraction pattern for S1, S2, S3 and S4 of pure ZnO NPs	59
Fig. 4-4	HRTEM micrograph of (S3) ZnO Nps sample (a) micrograph image, (b) diffraction patterns and (c) selected electron diffraction area and (d) histograms	62
Fig. 4-5	UV-VIS. Spectra for S1, S2, S3 and S4 of pure ZnO NPs	64
Fig. 4-6	$(\alpha h \nu)^2$ versus the photon energy $(h \nu)$ for S1, S2, S3 and S4 of pure ZnO NPs	64
Fig. 4-7	Variation of the Eg for S1, S2, S3 and S4 of pure ZnO NPs	65
Fig. 4-8	PL spectra for S1, S2, S3 and S4 of pure ZnO NPs	67
Fig. 4-9	Schematic energy level diagram showing the possible radiative transition for S1, S2, S3 and S4 of pure ZnO NPs	67
Fig. 4-10	J-V curves of the DSSCs for S1, S2, S3 and S4 of pure ZnO NPs	69
Fig. 4-11	P-V curves of the DSSCs for S1, S2, S3 and S4 of pure ZnO NPs	70
Fig. 4-12	J-V curves of the DSSCs S3 of pure ZnO NPs, using different dyes	72
Fig. 4-13	P-V curves of the DSSCs S3 of pure ZnO NPs, using different dyes	72

Fig. 4-14	The structural parameters of ZnO NPs synthesized at different pH value	75
Fig. 4-15	HRTEM micrograph of (pH14) ZnO NPs sample (a) micrograph image, (b) Diffraction patterns and (c) selected electron diffraction area and (d) histograms	78
Fig. 4-16	UV-VIS. Spectra for pH8, pH10, pH12 and pH14 of pure ZnO NPs	80
Fig. 4-17	$(\alpha h v)^2$ versus the photon energy (hv) of ZnO at different pH values	80
Fig. 4-18	Variation of energy gape with different pH value	81
Fig. 4-19	PL spectra of pure ZnO NPs samples at different pH value	82
Fig. 4-20	Schematic energy level diagram showing the possible radiative transition of ZnO NPs synthesized at different pH values	83
Fig. 4-21	J-V curves of DSSC of ZnO NPs synthesized at different pH values	84
Fig. 4-22	P-V curves of the DSSC of ZnO NPs synthesized at different pH values	85
Fig. 4-23	J-V curves for the DSSCs of pH14 ZnO sample, using different dyes	86
Fig.4.24	P-V curves for the DSSCs of pH14 ZnO sample, using different dyes	87
Fig. 4.25	X-ray diffraction pattern of ZnO NPs heated at 160 °C for different heating time.	89
Fig. 4.26	HRTEM micrograph of (C2) ZnO nanoparticles sample (a) micrograph image, (b) Diffraction patterns and (c) selected electron diffraction area and (d) histograms	92
Fig. 4-27	UV-VIS. Spectra for C1, C2, C3 and C4 of pure ZnO NPs	93
Fig. 4-28	$(\alpha h v)^2$ versus the photon energy (hv) of C1, C2, C3 pure ZnO NPs	94
Fig. 4-29	Variation of energy gape for C1, C2, C3 and C4 of pure ZnO NPs	94
Fig. 4-30	Photoluminescence studies for C1, C2, C3 and C4 of pure ZnO NPs	96
Fig. 4-31	Schematic energy level diagram showing the possible radiative transition for C1, C2, C3 and C4 of pure ZnO NPs	96

Fig. 4-32	J-V characteristic curves of the DSSCs for C1, C2, C3 and C4 of pure ZnO NPs	98
Fig. 4-33	P-V characteristic curves of the DSSCs for C1, C2, C3 and C4 of pure ZnO NPs	99
Fig.4-34	J-V cheracteristic curves of the DSSCs C2 of pure ZnO NPs, using different dyes	100
Fig. 4-35	P-V cheracteristic curves of the DSSCs C2 of pure ZnO NPs, using different dyes	101
Fig. 4-36	Open circuit voltage V_{oc} decay of the solar cell based on (C2) ZnO NPs using Eosin B as a photosensitizer	103
Fig. 4-37	Open circuit voltage V_{oc} decay of the solar cell based on (C2) ZnO NPs sample using Eosin Y as a photosensitizer	103
Fig. 4-38	Open circuit voltage V _{oc} decay of the solar cell based on (C2) ZnO NPs sample using Rhodamine B as a photosensitizer	104
Fig. 4-39	Absorption spectra of Eosin B, Eosin Y, Rhodamine B dyes were desorbed from ZnO semiconductor layer	105
Fig. 4-40	EDX spectrum of pure ZnO NPs	106
Fig. 4-41	X-ray diffraction pattern of Cu-doped ZnO, 1:0.0% Cu, R2: 1% Cu, R3:3%Cu, and R4:5% Cu	108
Fig. 4-42	HRTEM micrograph of (R3) ZnO nanoparticles sample (a) micrograph image, (b) Diffraction patterns and (c) selected electron diffraction area and (d) histograms	111
Fig. 4-43	UV-VIS. spectra of Cu-doped ZnO NPs, R1:0.0% Cu, R2: 1% Cu, R3:3%Cu, and R4:5% Cu	113
Fig. 4-44	(αhv) ² versus the photon energy (hv) of Cudoped ZnO NPs, R1:0.0% Cu, R2: 1% Cu, R3:3%Cu, and R4:5% Cu	114
Fig. 4-45	Variation of the energy of pure and Cu-doped ZnO NPs	114
Fig. 4-46	PL spectra showing the emission mechanism of pure and Cu-doped ZnO Nps., R1:0.0% Cu, R2: 1% Cu, R3:3%Cu, and R4:5% Cu	116
Fig. 4-47	Schematic energy level diagram showing the possible radiative transition in pure and Cu-doped	116

	ZnO Nps., R1:0.0% Cu, R2: 1% Cu, R3:3% Cu, and R4:5% Cu	
Fig. 4-48	J-V characteristic curves for DSSC of Cu doped ZnO NPs	118
Fig. 4-49	P-V characteristic curves for DSSC of Cu doped ZnO NPs	118
Fig. 4-50	J-V characteristic curves for DSSC of Cu doped ZnO NPs based on (R3) ZnO NPs using different photosensitizer	120
Fig. 4-51	P- V characteristic curves for DSSC of Cu doped ZnO NPs based on (R3) ZnO NPs using different photosensitizer	121
Fig. 4-52	EDX spectrum of synthesized ZnO NPs	122
Fig . 4-53	X-ray diffraction pattern of ZnO NPs synthesized at different annealing temperature: (01) 350 °C, (02) 400 °C, (03) 500 °C and (04) 550 °C	124
Fig. 4-54	HRTEM micrograph of (O2) ZnO NPs sample (a) micrograph image, (b) Diffraction patterns (c) selected electron diffraction area and (d) histograms	127
Fig. 4-55	UV-VIS. spectra of pure ZnO for O2, O3, and O4 of pure ZnO NPs	129
Fig. 4-56	$(\alpha h \nu)^2 (\alpha h \nu)^2$ versus the photon energy $(h \nu)$ for O2, O3, and O4 of pure ZnO NPs	129
Fig. 4-57	Variation of the energy gap of ZnO NPs synthesized using different annealing temperature	130
Fig. 4-58	PL spectra of pure ZnO at different annealing temperature	131
Fig. 4-59	Schematic energy level diagram showing the possible radiative transition in ZnO NPs synthesized using different annealing temperature	132
Fig. 4-60	J-V characteristic curves of pure ZnO NPs synthesized at different annealing temperature	133
Fig. 4-61	P-V characteristic curves of pure ZnO NPs synthesized at different annealing temperature	134
Fig. 4-62	J-V characteristic curves for DSSC of pure ZnO NPs based on (O3) ZnO Ps using different photosensitizer	136

Fig. 4-63	P-V characteristic curves for DSSC of pure ZnO NPs based on (O3) NPs using different photosensitizer	136
Fig. 4-64	EDX spectrum of synthesized ZnO NPs	137
Fig. 4-65	X-ray diffraction pattern for U1, U2, U3 and U4 of pure ZnO NPs	139
Fig. 4-66	HRTEM micrograph of (U4) ZnO NPs sample (a) micrograph image, (b) Diffraction patterns and (c) selected electron diffraction area and (d) histograms	142
Fig. 4-67	UV-VIS. Spectra for U1, U2, U3 and U4 of pure ZnO NPs	144
Fig.4-68	$(\alpha h \nu)^2$ versus the photon energy $(h \nu)$ for U1, U2, U3 and U4 of pure ZnO NPs	144
Fig. 4-69	Variation of the E_g for U1, U2, U3 and U4 of pure ZnO NPs	145
Fig. 4-70	PL spectra for U1, U2, U3 and U4 of pure ZnO NPs	174
Fig. 4-71	Schematic energy level diagram showing the possible radiative transition in U1, U2, U3 and U4 of pure ZnO NPs	147
Fig. 4-72	J-V characteristic curves of the DSSCs for U1, U2, U3 and U4 of pure ZnO NPs	149
Fig. 4-73	P- V characteristic curves of the DSSCs for U1, U2, U3 and U4 of pure ZnO NPs	149
Fig. 4-74	J-V characteristic curves for DSSC of pure NPs cell based on (U4) ZnO NPs using different dyes as a photosensitizer	151
Fig. 7-75	P-V characteristic curves for DSSC of pure NPs cell based on (U4) ZnO NPs using different dyes as a photosensitizer	151