

Faculty of Vet. Medicine Department of Microbiology

Assessment of lactate Dehydrogenase (LDH) and Alkaline Phosphatase (ALP) in Cattle Milk as an Indicator of Subclinical Mastitis

A Thesis Presented by

Hend Mahmoud Ahmed Mohamed Roshdy

B V Sc. (2011) Suez Canal University

B.V.Sc. (2011), Suez Canal University

For the Master Degree in Veterinary Medical Sciences (M.V.Sc) (Microbiology)

Under supervision of

Prof. Dr. Rafik Tawfik Mohamed Soliman

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Dr. Sherif Abdel Monaem

Assis. Prof. of Microbiology Faculty of Veterinary Medicine Cairo University

Dr. George Habib

Chief Researcher, Vacsera Holding company for vaccine Ministry of Health

Cairo University **Faculty of Veterinary Medicine** Department of Microbiology

Approval sheet

This is to certify that the dissertation submitted by vet/ Hend Mahmoud Ahmed Mohamed Roshdy, Cairo University, for the Master Degree in Veterinary Medical Sciences, Microbiology department (Bacteriology, Immunology, Mycology) has been approved by the **Examining Committee:**

Prof. Dr. Fawzy Ryad El-Saidy

Prof. of Microbiology Faculty of veterinary medicine Beni-Sweif University

Fawzy El-Saudy

Dr. Ahmed Samir Mohamed

Assistant. Prof. of Microbiology Faculty of veterinary medicine Cairo University

Prof. Dr. Rafik Tawfik Soliman

Prof. of Microbiology Faculty of veterinary medicine Cairo University (Supervisor)

Dr. Sherif Abdel Moneam Marouf

Assistant. Prof. of Microbiology Faculty of veterinary medicine Cairo University (Supervisor)

Date: 28/8/2017

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name : Hend Mahmoud Ahmed Mohamed Roshdy

Degree : M.V.SC. Degree in Veterinary Medical Sciences

Date of birth: 24/6/1989

Department: Microbiology (Bacteriology-Immunology-Mycology)

Title of the thesis: Assessment of lactate Dehydrogenase (LDH) and Alkaline phosphatase

(ALP) as an Indicator of subclinical mastitis

Supervisors:

Prof. Dr. Rafik Tawfik Mohamed Soliman

Dr. Sherif Abd El Monaem Maarouf

Dr. George Habib

Abstract:

Subclinical mastitis is a very important health problem affecting dairy cattle. The objective of this study was to evaluate the diagnostic potential of milk LDH and ALP for the diagnosis of subclinical mastitis in dairy cows as compared to SCC, CMT and bacterial examination. A total of 103 milk samples were collected from clinically apparently healthy cows. These samples were examined using SCC, CMT and bacteriological isolation. 64 cows (62.13%) were considered to be affected by subclinical mastitis. The following bacterial species were recovered from these milk samples; *S. aureus* (18.75%), *S. epidermidis* (14.06%), *E. coli* (14.06%), *Klebsiella pneumoniae* (35.93%) and *proteus vulgaris*. (17.18%). The mean activities of LDH and ALP were higher in the milk samples collected from cows with subclinical mastitis and reached to 830.69 ±161.53 IU/ml and 121.89 ± 23.43 IU/ml, respectively, as compared to the mean activities of these enzymes in the normal group (344.51 ±385.94) and (57.08 ±45.12) IU/ml, respectively. The obtained results revealed that the LDH and ALP activities in milk samples are reliable sensitive biomarkers for detection of bovine subclinical mastitis.

Keywords: Bovine subclinical mastitis, SSC, CMT, Milk Lactate dehydrogenase (LDH), alkaline phosphatase (ALP).

ACKNOWLEDGEMENT

الحمد لله رب العالمين

Firstly and for most, my deepest thanks to Allah who gives us everything and showing us the right path.

I would like to express my deep gratitude to my supervisor **Prof. Dr. Rafik Soliman**, Professor of Microbiology, Faculty of Vet. Med., Cairo University for his supervising and planning of the work.

I would like to express my great thanks to **Dr. Sherif Abdel Monaem**, Assis. Prof. of Microbiology, Faculty of Vet. Med., Cairo University, for his great help, cooperation and support during the course of this work.

I would like to express my great thanks to **Dr. George Habib**, Chief researcher at Vacsera holding company for his continuous support.

I would like to express my deep gratitude to **Dr. Tarek Mosallem,** researcher at the Institute of Animal reproduction, Ministry of Agriculture for technical help in measuring the enzyme activities in the examined milk samples.

Many thanks to all staff members of the Microbiology Dept. for their help, support and encouragement during the work

Dedication

To my beloved mother, father for supporting me all the way.

To my husband who has been the most encouraging, helpful and supportive till the end.

LIST OF CONTENTS

Serial No.	Торіс	Page No.
1	Introduction	1
2	Review of Literature	5
2.1	Mastitis	5
2.1.1	Definition	5
2.1.2	Pathogenesis	6
2.1.3	Types of mastitis	7
2.2	Bacterial causes of mastitis	8
2.3	Economic importance of subclinical mastitis:	16
2.4	Detection of subclinical mastitis	19
2.4.1	California mastitis test	19
2.4.2	Somatic cell count	22
2.4.3	Enzymatic detection of LDH and ALP in milk	
2.4.3	samples from cases of subclinical mastitis:	25
3	Materials and Methods	30
3.1	Materials	30
3.1.1	Samples	30
3.1.2	Culture media used for detection of microbial causes	
J.1.2	of subclinical mastitis:	30
3.1.3	Culture media used for biochemical identification of	
3.1.3	microbial isolates	32
3.1.4	Chemicals and reagent used for identification of	
	microbial isolates	33
3.1.5	Mastitis indicator test kits	34
3.1.5.2	Materials used for SCC	34
3.1.6	Materials used for LDH and ALP analysis	35
3.1.7	Disposable plastic, glassware and laboratory supplies	35
3.2	Methods	36
3.2.1	Samples	36
3.2.2	Examination of milk samples	36
3.2.2.1	Calfornia mastitis test	36
3.2.2.2	Assessment of Somatic cell count	37
3.2.2.3	Microbial identification of isolates recovered from	
	subclinical mastitis cases	37
3.2.3	Biochemical identification of the microbial isolates	38
3.2.4	Assessment of the enzymatic activities in milk	
J.4. f	samples	40
3.2.4.1	Assessment of LDH	40
3.2.4.2	Assessment of ALP	41

3.3	Statistical Analysis	41
4	Results	43
4.1	Results of examination of milk samples with CMT	43
4.3	Results of SCC determination in the examined milk	
4.2	samples	44
4.3	Results of microbial examination	45
4.3.1	Results of microbial isolation	46
4.3.2	Results of biochemical profile of the recovered 64	
4.3.2	isolates from the examined milk samples	47
4.4	Incidence of the recovered bacterial species	47
4.5	Result of assessment of LDH and ALP enzymatic	
4.5	activity in bovine milk samples	49
4.5.1	Descriptive analysis of obtained data	49
4.5.2	Comparative analysis of obtained data	51
4.5.3	Correlation analysis of obtained data	52
4.5.4	Diagnostic accuracy of results	60
4.5.4.1	Cut-off values, sensitivity, specificity and accuracy	
4.3.4.1	for each parameter were calculated as follows	60
4.5.4.2	The Receiver Operating Characteristics (ROC) curves	
4.3.4.4	and Area under the Curve (AUC)	61
4.5.4.3	Comparison between AUCs of different indicators	63
5	Discussion	65
6	Conclusion	72
7	Summary	73
8	References	77
	Arabic summary	١

LIST OF TABLES

Tab. No.	Title	Page
1	Results of CMT on 103 milk samples.	43
2	SCC ranges and means of 103 milk samples.	44
3	Results of haemolytic activity of microbial isolates	4.5
	recovered from subclinical mastitic milk samples.	45
4	Results of the recovered isolates on MacConkey agar medium from subclinical mastitic samples	46
	Results of recovered isolates on Mannitol salt agar from	
5	subclinical mastitic samples.	46
	Results of the biochemical activites of 64 recovered	
6	bacterial isolates from the subclinical mastitic milk	
	samples.	47
	Incidence of bacterial pathogens isolated from milk	
7	samples of cattle diagnosed positive for subclinical	
	mastitis using SCC and CMT	48
	Descriptive analysis: The means, medians, standard	
8	deviation (SD) and ranges of normal milk group $(n = 39)$	
O O	and abnormal milk group ($n = 64$). (Total number =	
	103).	50
	Table 1: Comparison between normal and abnormal milk	
9	groups regarding all laboratory results - Mean difference	
	(MD) + Standard deviation (SD) and Mann-Whitney U	5 2
	test results (p-value), and parametric Students't test.	52
10	Assessment of the relationship between SCC and both	
10	LDH and ALP- Results of Spearman's correlation	57
	coefficient [rho and p-value].	51
11	Accuracy measurements of different indicators at optimal cut-offs.	61
10	Comparison between Area Under the Curve (AUCs) of	
12	different indicators – Results of DeLong's test [p-value].	64

LIST OF FIGURES

Fig. No.	Title	Page No.
1	Percentages of CMT results in the examined 103	
1	milk samples	44
	Incidence of bacterial pathogens isolated from	
2	bovine milk samples collected from cattle diagnosed	
2	positive for subclinical mastitis using SCC and	
	CMT.	49
	Means and standard deviations records of LDH,	
3	ALP and SSC in milk samples from normal and	
	abnormal group	52
4	Correlation between lactate dehydrogenase and	
4	Somatic Cell Count among the abnormal group.	58
5	Correlation Between Alkaline Phosphatase And	
5	Somatic Cell Count Among The abnormal Group	58
6	Correlation between lactate dehydrogenase and	
U	Somatic Cell Count regarding the whole sample.	59
7	Correlation between alkaline phosphatase and	
,	Somatic Cell Count regarding the whole sample.	59
8	Lactate Dehydrogenase ROC curve.	62
9	Alkaline phosphatase ROC curve.	62
10	Somatic Cell Count ROC curve	63