Role of Measurement of Interleukin 10 in Idiopathic (Immune) Thrombocytopenic Purpura -ITP

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Hematology

By

Heba Ahmed Tolba El-sayed

MB.B.Ch. Zagazig University

Supervised by

Prof. Dr. Hanan Hamed

Professor of Internal Medicine & Clinical Hematology Faculty of Medicine- Ain Shams University

Dr. Mohamed Moussa

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine-AinShamsUniversity

Dr. Hanaa Fathey

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgments

First of all and above all great thanks to ALLAH whose blessings on me cannot be counted.

The sincerest thanks, deepest appreciation and greatest admiration to my **Prof. Dr. Hanan Hamed**, Professor of Internal Medicine & Clinical Hematology, Faculty of Medicine- Ain Shams University, for her constructive keen supervision, Fruitful criticism, continuous support and encouragement to complete this work. I really have the honor to complete this work under her supervision.

I feel greatly indebted to **Dr. Mohamed Moussa**, Professor of Internal Medicine and Clinical Hematology, Faculty of Medicine- Ain Shams University, for his trustful help, sincere guidance, continuous support and assistance.

Finally, I would like to thank **Dr. Hanaa Fathey,** Assistant Professor of Internal Medicine and Hematology, Faculty of Medicine- Ain Shams University, for the efforts and time she has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family, specially my Husband and my Parents, for their support and care.

Candidate

A Heba Ahmed Tolba

List of Contents

Subject	Page No.
List of Tables	i
List of Figures	v
Introduction	1
Aim of the Work	6
Review of Literature	
Platelet Abnormalities	7
Interleukin-10	60
Relation between IL10 and ITP	86
Patients and Methods	96
Results Error! Bookm	ark not defined.
Discussion	120
Summary	134
Conclusion and Recommendations	137
References	138
Arabic Summary	

List of Abbreviations

Abbrev. Full term

ADP : Adenosine di-phosphate

AITP : Autoimmune thrombocytopenic purpura

ALPS : Autoimmune lymphoproliferative syndrome

APCs : Antigen presenting cells

cAMP : Cyclic adenosine mono phosphate

CTL : Cytotoxic T lymphocytes'

CVID : Common variable immunodeficiency

DCs : Dendritic cells

DXM : Dexamethasone

EBV : Epstein–Barr virus

GM-CSF : Granulocyte-macrophage colony stimulating factor

GP : Glycoproteins

H influenza: Hemophilus influenzae

HCV : Hepatitis c virus

HIV : Human immunodifieciency virus

IgG : Immunoglobulin G

IL : Interleukin

IL-10R : IL-10 receptor

INF : Interferon

ITP : Idiopathic thrombocytopenic purpura

IVIG: Intravenous immunoglobulins

JAK : Junus kinase

KIR : Killer cell immunoglobulin-like receptor

List of Abbreviations

LSD : Least Significant Difference

MAPK : mitogen-activated protein kinase

M-CSF : macrophage colony stimulating factor

MHC : Major histocompatibility

NK : Natural killer

NSAIDS : Non-steroidal anti-inflammatory drugs

Os : oxidative stress

PCD: programmed cell death

PDGF : Platelet-derived growth factor

PF4 : Platelet factor 4

RBCs : Red blood cells

RES : Reticuloendothelial system

SD : Standard deviation

STAT : Signal trasducers and activator of transcription

TGF-β : Transforming growth factor beta

Th : T helper cell

TNF-β: Tumor necrosis factor-beta

TPO: Thrombopoietin

Tregs : Regulatory T cells

TXA2 : Thromboxane A2

Tyk : Tyrosin kinase

VEGF : vascular endothelial growth factor

vWF : von Willebrand factor

 βTG : β -thromboglobulin

List of Tables

Table N	No.	Title	Page No.
Table (1): Pa	athophysiologic c	classification of throm	bocytopenia16
Table (2):	Recommendation	ons for Initial Treatme	nt of Immune
Thrombocyto	penia Patients wit	th Platelet Counts <20,	000-30,000/μl. (<i>Liel et al.</i> ,
2014)	51		
Table (3):	Characteristics	of the treatments used	in refractory chronic
idiopathicthro	mbocytopenic pu	rpura	56
Table (4): Co	ellular Homologs	s of Human IL-10	70
Table (5): Co	ellular sources of	IL-10 (Asadullah et	<i>al.</i> , <i>1999b</i>) 72
Table (6):	Effect of IL-10	on immune cells (As	adullah et al., 1999b) 79

List of Figures

Figure N	o. Title	Page No.
Figure (1): L	ight microscopy of Wright-stained smear re	eveals platelets as
small, anucleated	d fragments with occasional reddish granule	e (<i>Gawaz</i> , <i>2001</i>). 8
Figure (2): S	canning electron micrograph of blood cells	. From left to right:
human erythrocy	yte, activated platelet, leukocyte(Borsig, 20	<i>08</i>) 8
Figure (3): A	activated platelets showing pseudopodia em	ission (x5,
000)(Gawaz, 200	01)	9
Figure (4):Schen	matic diagram of platelet(Jennifer et al., 20	<i>013</i>)11
Figure (5): Plate	elets adhesion and aggregation (Varga etal., 20	008) 12
Figure (6): S	teps of hemostasis and the role of platelets	in the formation of
platelet plug (We	ei et al., 2009)	15
Figure (7): Pete	chia on the tongue in a person with platelet	s of 3 due to
ITP(Leamor Ka	hanov,et al.)	19
Figure (8): Purp	oura spots(Leamor Kahanov,et al.)	19
Figure (9):Imm	une dysregulation in ITP(Wajeeha, 2008)	20
Figure (10):Moo	del of relationship of contributing factors in	n ITP (Cuker et al.,
2010)		21
Figure (11):	Multi-step disorders in ITP. (1) Self-antigonal	en generation, (2)
T, B central and	peripheral tolerance failure, (3) activation of	of T-B cells and
•	e that lead to platelet clearance. (#) Single	•
not always lead t	to clinical symptom, for the final stage of a	ntibody production
usually needs 1,	2 and 3(Amira, 2014).	23
•	T cell immune abnormalities in ITP patho	•
	ia pathogenesis is a complicated process. T	
	e involved in ITP pathogenesis. These abno	
-	igen reactive cytotoxic T cells, abnormal nu	
	egulatory cells, loss of Th1/Th2 balance, me	
	rmalities and abnormal T cell anergy(Xueb	
Figure (13):	Schematic of shifts in the T-cell balance in	n ITP(Cines et al.,
2009).	31	
•	Mechanisms of central and peripheral T co	
Fas/FasL pathway induces the activated T cells to apoptosis, (2) inhibitory		
	ecules help T cell anergyand (3) regulatory	
profile of suppressive cytokines(Zhou et al., 2005)		

Figure (15):	Antiplatelet-antifaody-induced destruction of platelets (P) in
chronic idiopath	ic thrombocytopenic purpura (Levine, 2004)
Figure (16):Per	ipheral blood and Bone marrow smears in ITP
Figure (17):	Therapy of adult chronic idiopathic thrombocytopenic
purpura in adults	s(other forms of this disease are treated differently, hence the
need for the qua	lifiers). Emergency treatment is given as needed for extremely
low platelet cour	nts $(5000-10,000/\mu l)$ or for active bleeding. Initial treatment is
usually started w	vith prednisonealthough some physicians prefer periodic anti-
D (antibody again	inst erythrocyte RhDantigen) or pulsed dexamethasone.
Treatment of ref	ractory patients usually proceeds in the order shown;
experimental the	erapy can be given at any time, depending on thetoxicity of
the treatment rel	ative to that of the standard therapies
Figure (18):Tre	atment algorithm for ITP(Nomura et al., 2016)59
Figure (19):	a.) Stereo diagram of IL-10 monomer, hydrophobic residues
marked in red (p	db code 2ILK); b.) Stereo diagram of IL-10 dimer, monomers
are shown in vio	let and green. Disulfide bonds are in yellow. All figures are
made with progr	am RIBBONS (<i>Karan et al., 2016</i>) 71
Figure (20):Thr	ee-dimensional structure of hIL-1072
Figure (21):	Schematic diagram of class II cytokine receptor complexes.
The horizontal b	ox represents the cell membrane. Functional receptor pairs
are labeled (high	a-affinity receptor first) and shown as black (high affinity) and
gray (low affinit	y) vertical boxes. Cytokines that interact with a particular
receptor pair are	shown at the top of each receptor pair. IL-22BP is a soluble
IL-22 receptor a	ntagonist (<i>Data from refs. 1 and 6–10.</i>)
Figure (22):	1 1
1J7V) receptor r	nolecules are in orange, IL-10 dimer has the same color code
as in figure 1b (Ruiz-Gómez et al., 2016) 76
Figure (23):	Effects of IL-10 on the Th1/Th2 dysbalance. An immune
	l a type 1 cytokine pattern is a typical finding in several
indications such	as psoriasis, rheumatoid arthritis
Figure (24):	Template-based rescaffolding strategy. 3D functional
	esenting the side chain functionalities of selected IL-10R1
-	(yellow sticks) are used to define the 3D pattern syntax query
R-<2,6>-R-<4,5	>-Y- to search for seeding templates in PDB. One of the best
	ding template (2ACA149-157, in green), is shown
superimposed to	the selected IL-10R1 relevant residues for molecular
recognition Mo	lecular images created with PvMOL

List	of	Fig	ou	res

Figure (25):Schen	matic of shifts in the T-cell balance in ITP	81
Figure (26):	Γhe opposing functions of IL-10 on regulatory T-cell	
subsets. IL-10 acts	s on Foxp3+ TR cells to enhance Foxp3 and IL-10	
expression, and su	stain regulatory capacity, whereas IL-10 acts on DN T ce	11s
to enhance apopto	sis. Notably, both Foxp3+ TR and DN T cells are IL-10	
producers, potenti	ally allowing both autocrine and paracrine effects of IL-	
10(Pierson etal., 2	2010)	84

ABSTRACT

Biological markers useful for defining patient with newly diagnosed pt immune thrombocytopenic purpura (ITP) who are likely to develop the chronic form of the disease are partially lacking. The purpose of this study was to assess the clinical role of cytokines in patient with ITP and correlate its levels with different disease stages.

20 patient with ITP at the onset of their disease, 40 chronic, and 30 healthy matched controls enrolled in this study. Serum levels of IL10 was measured in all patient using quantitative immunoenzymatic assays.

Serum IL10 levels were significantly higher in patients with an acute evolution of ITP than in either healthy controls or patients with chronic ITP.

Conclusion. IL-10 seems to predict the clinical course of ITP, as it is significantly higher at the onset of disease in patients who obtain disease remission in less than 1 year.

Keywords: immune thrombocytopenic purpura, cytokines, IL10 and adult.

Introduction

diopathic thrombocytopenic purpura is an acquired disorder characterized by decreased number of circulating platelets known as thrombocytopenia and resulting in subnormal platelet counts.

Epidemiological studies have revealed that the annual incidence of newly diagnosed itp is 4-5\100.000 and that approximately 75 per 100 of cases are of the acute type. ITP is classified by duration into newly diagnosis, persistent (3-12 months) and chronic (more than 12 months) (*Stevens et al.*, 2006).

Antiplatelet antibodies are responsible for platelet destruction by the reticuloendothelial system and probably for inhibition of megakeryopoiesis. Most cases are considered primary whereas the rest is secondary (attributed to other cause: SLE ,Evan syndrome, HIV and post vaccination). (*Johnsen*, 2012).

A normal human platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Thrombocytopenia refers to a disorder in which there is a relative decrease in platelet count. One common definition of thrombocytopenia that requires emergency treatment is a platelet count below 50,000 per microliter (*Houghton et al.*, 2010).

Thrombocytopenia symptoms ranging from no symptoms up to excessive bleeding, including nose bleeds and easy bruising according to platelet count. Thrombocytopenia arises from one of three reasons: the bone marrow may not produce enough platelets; too many platelets may be broken down in the blood; or too many platelets may be destroyed in the liver or spleen. Thrombocytopenia can be caused by a variety of conditions or medications(*Furlan et al.*,2001).

Purpura may be caused by spontaneous bleeding under the skin in form of petechiae that may occur on feet and leg and it is painless, round and pinpoint (1 to 3 mm in diameter) petechiae usually appear and fade, ecchymoses. Larger than petechiae, ecchymoses are purple, blue or yellow-green areas of skin that vary in size and shape. They can occur anywhere on the body(*Stasi et al.*, *2009*).

Idiopathic (immune) thrombocytopenic purpura (ITP) is a heterogeneous clinical disorder characterized by immune-mediated platelet destruction. ITP is usually a benign, self-limiting disease. However, approximately 20% of newly diagnosed ITP progress to a chronic form defined according to standardised criteria (*Rodeghiero et al.*,2009).

The clinical differences between newly diagnosed and chronic ITP suggest the existence of different pathophysiological mechanisms in two forms humoural and cellular immunity and inadequate platelet production in the development of this condition (*Provan et al.*,2010).

Manifests as a bleeding tendency, easy bruising (purpura), or extravasation of blood from capillaries into skin and mucous membranes (petechiae). Although most cases of acute ITP, are mild and self-limited, intracranial hemorrhage may occur when the platelet count drops below 10×10^9 /L ($< 10 \times 10^3$ /µL); this occurs in 0.5-1% of children, and half of these cases are fatal. (*Butros et al., 2007*) Isolated thrombocytopenia in complete blood cell count and peripheral blood smear is the hallmark of ITP. Bone marrow aspiration and biopsy in patients with ITP shows a normal-to-increased number of megakaryocytic in the absence of other significant abnormalities and it also used as a screening for treatment includes corticosteroids In adults older than 60 years, biopsy is used to exclude myelodysplastic syndrome or leukemia (*Calpin et al., 2006*).

Serum levels of T helper (Th) type 1, Th2 and T-regulatory associated cytokines, such as interferon (IFN) γ , tumour necrosis factor (TNF) α , and interleukin (IL) 2, IL6, IL10, and markers of thrombopoiesis, such as reticulated platelet count and thrombopoietin, were assessed in different phases of ITP in patients and in healthy controls might be considered predictors of ITP progression(*Nugent et al.*,2009).

Interleukin-10 is an important immunoregulatory and an antiinflammatory cytokine and an inhibitor of IFN-_ synthesis in TH1 cells. Also calledhuman cytokine synthesis inhibitory factor (*Mocellin et al.*, 2003)

IL-10 is secreted by macrophages, TH2cells and mast cells. Cytotoxic T cells also release IL-10 to inhibit viral infection stimulatedNK cell activity. It also functions as an inhibitor of TH1 cells and inhibiting macrophages, it functions as an inhibitor of antigen presentation. Also it can promote the activity of mast cells, B cells and certain T cells. The major immunobiological effect of IL-10 is the regulation of the TH1/TH2 balance. IL-10 is involved in assisting against intestinal parasitic infection, local mucosal infection by costimulating the proliferation and differentiation of B cells. Its indirect effects also include the neutralization of bacterial toxins. It is a stimulator of NK cells, enhances their cytotoxic activity(*Murray.2006*).Based on its immunoregulatory function, IL-10 and ligands for its receptors are tempting candidates for therapeutic intervention in a wide variety of disease states, including autoimmune disorders, acute and chronic inflammatory diseases, cancer, infectious disease, psoriasis and allergic disease.

Modest but significant improvement has been observed in patients with chronic immune disorders after