Cyclophosphamide in Biologic Naïve Rheumatoid Arthritis patients Resistent to Traditional DMARDs

Thesis

Submitted in Partial Fulfillment of the Master Degree in Onternal Medicine

Presented by

Asmaa Mortada Abd Ellah

M.B.B.CH

Under Supervision of

Prof.Dr. Howaida Elsayed Mansour

Professor of Internal Medicine and Rheumatology Ain-Shams University

Dr. Noran Osama Ahmed El Azizi

Assistant Professor of Internal Medicine and Rheumatology Ain-Shams University

Dr. Maha Ahmed El Serwy

Lecturer of Internal Medicine and Rheumatology Ain-Shams University

> Faculty of Medicine Ain-Shams University 2017

List of Contents

Title	Page No.
List of Tables	3
List of Figures	5
List of Abbreviations	7
Introduction	1
Aim of the Work	3
Review of Literature	
Rheumatoid Arthritis	4
Cyclophosphamide	59
• Cyclophosphamide in Rheumatoid Arthritis	67
Patients and Methods	71
Results	78
Discussion	103
Summary and Conclusion	110
Recommendations	113
References	114
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	ACR /EULAR 2010 classification criter RA	
Table (2):	Disease activity indices of RA	35
Table (3):	DAS28 score interpretation	73
Table (4):	Health assessment questionnaire	74
Table (5):	Description of demographic, laboratory clinical data of the studied patients at bastudy	seline
Table (6):	Description of demographic, laboratory clinical data of the studied patients a study endpoint	t the
Table (7):	Comparison between RA patients at baseline and endpoint regarding clinical laboratory data	l and
Table (8):	Improvement in DAS 28 score at the endpoint	•
Table (9):	Correlation between disease duration all parameters of the studied patien baseline	ts at
Table (10):	Correlation between disease duration other parameters of the studied RA parat study endpoint	tients
Table (11):	Correlation between sex of the stream patients and disease activity marker study baseline:	rs at
Table (12):	Correlation between sex of the st patients and disease activity marker study endpoint	rs at

List of Tables (Cont...)

Table No.	Title	Page No.
Table (13):	Correlation between RF and disease at markers at study endpoint	•
Table (14):	Correlation between ACCP and diactivity markers at study endpoint	
Table (15):	Correlation between CRP at the study line and HAQ, VAS, DAS score at endpoint	study
Table (16):	Correlation between DAS -28 score a baseline and DAS-28, HAQ, VAS score study endpoint	es at
Table (17):	Correlation between ESR at the baseline and HAQ, VAS, DAS score at endpoint	study

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	Adaptive and Innate Immune Proce within the Joint in Rheumatoid Arthr	
Figure (2):	Diagram showing the costimulated dependent interactions among dend cells, T cells, and B cells	ritic
Figure (3):	RA hand deformities	20
Figure (4):	Patient's feet deformed by rheuma	
Figure (5):	RT knee effusion in RA	22
Figure (6):	Serial MRI scans	39
Figure (7):	Eular recommendation for manager of RA	
Figure (8):	Visual analogue scale	75
Figure (9):	Sex distribution of the studied patients.	
Figure (10):	Percentage of RF in studied RA patien	nts80
Figure (11):	Percentage of ACCP in studied patients.	
Figure (12):	Comparison between ESR, CRP and level, at baseline and at study endpoir	
Figure (13):	Comparison between Hb level and I 28 score at baseline and at stendpoint.	tudy
Figure (14):	Pie Chart showing improvement disease activity by DAS- 28 score at end of the study.	the

List of Figures (Cont...)

Fig. No.	Title 1	Page	No.
Figure (15):	Comparison between clinical data study baseline and endpoint		87
Figure (16):	Comparison between HAQ score at substantial baseline and endpoint		87
Figure (17):	Comparison between VAS score at substantial baseline and endpoint.	•	88
Figure (18):	Pie Chart showing VAS score in pati pre-treatment with CYC at the sentry.	tudy	88
Figure (19):	Pie Chart showing VAS score in pati post-treatment with CYC		89
Figure (20):	Correlation between disease duration SJC.		90
Figure (21):	Correlation between disease duration Hb level at study endpoint		92
Figure (22):	Correlation between disease duration Plt level at study endpoint		92
Figure (23):	Males have significantly higher plate levels at the study baseline		94
Figure (24):	HAQ score in males and females at study endpoint.		96
Figure (25):	Correlation between Hb level in pati with positive and negative RF		98
Figure (26):	Correlation between CRP at the state base line and VAS score at standard endpoint.	tudy	. 100
Figure (27):	Correlation between ACCP and Plt lat the study endpoint.		. 101

List of Abbreviations

Abb.	Full term
ACPA	Anticitrullinated protein antibodies
	American College of Rheumatology
	Aldehyde dehydrogenase
	Acute myeloid leukemia
	Cell of differentiation
	Clinical Disease Activity Index
	Cyclo-oxygenase 2
<i>CRP</i>	C- reactive protein
	Cytotoxic T-lymphocyte-associated antigen
CVD	Cardiovascular diseases
CYC	Cyclophosphamide
DAS	Disease activity score
<i>DIP</i>	Distal interphalangeal.
DMARDs	Disease modifying antirheumatic drugs
<i>EAM</i>	Extra articular manifestation
<i>EGPA</i>	Eosinophillic granulomatosis with polyangiitis
<i>ESR</i>	Erythrocyte sedimrntation rate
<i>EULAR</i>	European League Against Rheumatism
FDA	Food and drug administration
GCs	Glucocorticoids
<i>GM-CSF</i>	Granulocyte / macrophagecolony-stimulating factor.
<i>GPA</i>	Granulomatosis with Polyangiitis
<i>HAQ</i>	$\dots Health \ assessment \ question naire$
HB	Hemoglobin
HCQ	Hydrochloroquine

List of Abbreviations (Cont...)

Abb.	Full term
HLA	Human Leucocyte antigen
	High resolution computed tomography
	Immune complex
	Intercellular adhesion molecule-1
<i>Ig</i>	Immunoglobulin
<i>IL</i>	Interleukin
<i>ILD</i>	Interstitial lung disease
<i>IM</i>	Intramuscular
<i>JAK</i>	Janus kinase
JIA	Juvenile inflammatory arthritis
<i>MCP</i>	Metacarpophalangeal
<i>MI</i>	Myocardial infarction
<i>MMP</i>	Metalloproteinases
<i>MPA</i>	Microscopic polyangiitis
<i>MRI</i>	Magnetic resonance imaging
<i>MS</i>	Multiple sclerosis
<i>MTP</i>	metatarsophalangeal
<i>MTX</i>	Methotrexate.
<i>NHS</i>	National health service
NICE	The National Institute for Health and Care Excellence
NSAIDs	Non steroidal anti-inflammatory drugs
<i>OPN</i>	Osteopontin
PADI	Peptidylarginine-deiminase
<i>PAF</i>	Platelet activating factor
<i>PDGF</i>	Platelet derived growth factor

List of Abbreviations (cont...)

Abb.	Full term
PIP	Proximal interphalangeal.
<i>PLT</i>	2
PRF	Perforin 1 (pore forming protein).
	Progressive systemic sclerosis
	Protein tyrosine phosphatase non-receptor type 22
<i>RA</i>	Rheumatoid arthritis
RANKL	Receptor activator of nuclear factor κB.
<i>RF</i>	Rheumatoid factor
SC	Subcutaneous
SD	Standard deviation
SDAI	Simplified Disease Activity Index
SE	Shared epitope
SIADH	Syndrome of inappropriate antidiuretic hormone
SJC	Swollen joint count
STAT	Signal Transducer and Activator of Transcription
SyK	Spleen tyrosine kinase
<i>Th</i>	T helper cell
<i>TJC</i>	Tender joint count
TNF	Tumor necrosis factor
TRAF	TNF receptor-associated factor
<i>URT</i>	Upper respiratory
VCAM-1	Vascular cell adhesion molecule-1

ABSTRACT

There was no significant statistical correlation between patients with positive and negative RF and different disease activity markers except for Hb level showing significant increase in patients with positive RF post-treatment with CYC (P-value=0.042), there was also no significant statistical correlation between patients with positive and negative ACCP and different disease activity markers except for Plt level showing significant decrease in patients with positive ACCP post-treatment with CYC (P-value=0.034).

Higher CRP at baseline in RA patients indicates poor response to treatment and higher VAS at study endpoint.

IV pulse CYC and methylprednisolone (MP) are of a significant benefits in induction of remission in resistant aggressive RA patients who failed to respond to traditional DMARDs.

Keywords: Non steroidal anti-inflammatory drugs - Progressive systemic sclerosis - Protein tyrosine phosphatase non-receptor type 22

INTRODUCTION

Pheumatoid arthritis (RA) is characterized by abnormal proliferation of synoviocytes, leukocyte infiltration, and angiogenesis (*Park et al., 2014*). Epidemiological studies show that RA affects 1% of the population worldwide (*Rojas-Villarraga et al., 2009*).

The therapeutic array of RA includes several categories of medicinal products, of varying potential. There are several criteria for the classification of medicinal products used against this disease, one of the most important and modern of which divides such substances according to their effects on the progress of the disease: symptom-modifying antirheumatic drugs (including non-steroidal anti-inflammatory drugs and corticosteroids), disease-modifying antirheumatic drugs (including various substances, such as gold salts, antimalarials, sulfasalazine, D-penicillamine; non-specific immunosuppressive medication, such as methotrexate, cyclophosphamide, azathioprine and leflunomide) and biological therapy is a recent addition (Negrei et al., 2016).

Costs of biologics for Rheumatoid arthritis (RA) are remarkably high, which makes these agents an important target for economic evaluations (*Joensuu et al.*, 2015).

Cyclophosphamide is an immunosuppressive medicine, it has been found to be effective in treating serious complications of rheumatoid arthritis such as vasculitis. By

interrupting the immune process, cyclophosphamide reduces inflammation and slows joint damage caused by rheumatoid arthritis (Longo et al., 2012).

However, by reviewing the literature there were limited studies about the use of cyclophosphamide as antirheumatic drug in patients with rheumatoid arthritis.

AIM OF THE WORK

o evaluate the efficacy of CYC and methyl prednisolone pulse therapy in induction of remission in biologic naïve RA patients resistant to conventional DMARDs and can't afford biological treatment.

Chapter 1

RHEUMATOID ARTHRITIS

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of synovial tissue that leads to damage of cartilage and bone, resulting in irreversible joint destruction (Smigielska-Czepiel et al., 2014). More aggressive forms of RA also involve extra-articular tissues, causing lung inflammation, splenomegaly with cytopenia, skin nodules and vasculitis (Fleischman et al., 2012).

Epidemiology:

The prevalence of RA is relatively constant in many populations, at 0.5-1% (*Uhlig*, 2014). The prevalence of RA in rural Egypt is 0.29% similar to other oriental rural populations but lower than western populations (*Abdel Tawab et al.*, 2009).

Women are 3 times more often than men. Onset is most frequent between the ages of 40 and 50, but people of any age can be affected (*Vollenhoven 2009*)

Mortality rates are more than twice as high in patients with RA as in the general population (Choy, 2012).

Etiology of RA:

The exact cause of RA is unknown. It is the result of an environmental exposure or "trigger" in a genetically susceptible individual *(Gibofsky, 2012)*.

1. Hormonal factors:

The predominance of RA in females suggests a role for hormonal factors, estrogens stimulate the immune system, and low testosterone levels have been reported in men with RA (Tobon et al., 2010). Female sex hormones may play a protective role in RA. For example, the use of the oral contraceptives pills and pregnancy are both associated with a decreased risk (Alan and Jacqueline, 2012). One possible explanation to this finding is that hormone replacement therapy (HRT) protects against the production of anti-citrullinated protein-antibodies (ACPA) (Tobon et al., 2010).

Improvement occurs for 50 to 70% of patients by the end of the first trimester and is usually sustained throughout pregnancy. However, within 3 months of delivery, relapse is observed in 90% of patients (*Shammas et al., 2010*). Both female subfertility and the immediate postpartum period after a first pregnancy (especially when breastfeeding) appear to increase the risk of RA (*McInnes and Schett, 2011*).