POTENTIALITY OF AZOLLA IN PHYTOREMEDIATION OF SOME HEAVY METALS FROM AGRICULTURALWASTEWATER

RABAB RAHMY HANAFY SAYED

B.Sc. Agric. Sc. (Agric. Biotechnology) Fac. of Agric., Ain Shams Univ., 2011

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Agriculture Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

2017

Approval Sheet

POTENTIALITY OF AZOLLA IN PHYTOREMEDIATION OF SOME HEAVY METALS FROM AGRICULTURALWASTEWATER

By RABAB RAHMY HANAFY SAYED

B.Sc. Agric. Sc. (Agric. Biotechnology) Fac. of Agric., Ain Shams Univ., 2011

This thesis for M.Sc. degree has been approved by:
Dr. Aziz Mohamed Aziz Higazy
Dr. Mohamed Al-Sayed Mostafa El-Haddad
Dr. Mona Mohamed Said Zayed
 Dr. Wedad El-Tohamy El-Sayed Ewada Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Date of Examination: / / 2017

POTENTIALITY OF AZOLLA IN PHYTOREMEDIATION OF SOME HEAVY METALS FROM AGRICULTURALWASTEWATER

RABAB RAHMY HANAFY SAYED

B.Sc. Agric. Sc. (Agric. Biotechnology) Fac. of Agric., Ain Shams Univ., 2011

Under the supervision of:

Dr. Wedad El-Tohamy El-Sayed Ewada

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Mona Mohamed Said Zayed

Associate Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Heba Mohamed Abd El-Aziz Khalil

Senior Researcher of Agricultural Microbiology, Department of Agricultural Microbiology, Institute of Soils, Water and Environment Res., ARC.

ABSTRACT

Rabab Rahmy Hanafy Sayed. Role of *Azolla* in Accumulation of Some Heavy Metals from Agricultural wastewater. Unpublished M.Sc. Thesis, Faculty of Agriculture Ain Shams University, 2017.

Azolla pinnata is a small aquatic fern which considered as a multipurpose organism. It is used in bioremediation to remove heavy metals from polluted wastewaters. In view of its potentiality, Azolla pinnata were tested for their growth on different media (Yoshida, Peat moss, and Soil media) to select the best media for the growth of Azolla pinnata. Then the best media was examined for the potentiality of Azolla pinnata to withstand a different concentrations of different heavy metals. Yoshida medium was found to be the most suitable medium, as it recorded the highest significant records in fresh and dry weight, being 25.38 and 1.69 g/ pot respectively, the doubling time was 5.36 days, NPK%, being 3.87, 0.58 and 1.59% respectively and nitrogenase activity reached to 13.29 μ mol C₂H₄/g dry weight. / hr.

The fresh and dry weight of *Azolla pinnata* exposed to Pb^{+2} , Co^{+2} , Cu^{+2} , were increased by increasing the concentration of the metals from 5 to 35 mg/liter then it decreased at concentration 45 mg/liter for all the tested heavy metals. While, doubling time decreased gradually by increasing the concentration of Pb^{+2} , Co^{+2} , Cu^{+2} from 5 to 35 mg/liter and started to increase by increasing the concentration of Pb^{+2} to 45 mg/liter in the medium.

When *Azolla pinnata* was cultivated for 25 days in different concentrations from agricultural wastewaters (25%, 50%, 75% and 100%) contaminated with Pb⁺⁺, Co, and Cu, the highest values of fresh and dry weight of *Azolla pinnata* as well as NPK% were recorded within the treatment of 75% agricultural wastewater and 25% tap water being 11.19 and 0.73 (g/pot); 3.35%, 0.80% and 2.75% in drain 1; 10.89 and 0.73 (g/pot) 1; 3.39%, 0.69% and 2.69% in drain 2 and 11.2 and 0.73 (g/pot), 3.31%, 1.69% and 2.71% in drain 3 respectively.

The lowest doubling time was recorded within *Azolla pinnata* inoculated on 75% agricultural wastewater during all incubation period in the three agricultural wastewaters being 2.17, 3.56, 4.96, 5.96 and 7.17 days in drain 1 2.22, 3.56, 4.71, 6.01 and 7.25 days in drain 2 and 2.58, 4.21, 4.90, 6.00 and 7.25 days in drain 3 respectively. While the lowest heavy metal concentrations were recorded in *Azolla pinnata* cultivated in 25% agricultural wastewater during all incubation periods in the three tested agricultural wastewaters.

Rice plants irrigated with remediated agricultural wastewaters recorded that highest significant increase in plant height (cm), grain yield (g/pot) and straw yield (g/pot) were recorded within plants irrigated by 75% agricultural wastewater and inoculated with *Azolla pinnata* + *Pseudomonas fluorescens* being 97.85 (cm), 29.40 (g/pot) and 26.90 (g/pot); 1.62, 2.29 and 1.10% in grain and 0.73, 0.52 and 1.97% in straw respectively. While the lowest significant concentration in (Pb, Co and Cu) were recorded in plants irrigated with 25% agricultural wastewater and inoculated with *Azolla pinnata* and *Pseudomonas fluorescens* being 0.01, 0.01, 0.02 mg/g dry weight in grain and 0.02, 0.01 and 0.03 mg/g dry weight in straw respectively.

In wheat plants irrigated with remediated agricultural wastewaters recorded that highest significant increase in plant height (cm), grain yield (g/pot) and straw yield (g/pot) were recorded within plants irrigated by 75% agricultural wastewater and inoculated with *Azolla pinnata* + *Pseudomonas fluorescens* being 93.30 (cm), 31.96 (g/pot) and 26.67 (g/pot) and1.95, 0.91 and 2.10% in grain and 0.85, 0.55 and 1.93% in straw respectively. While the lowest significant concentration from (Pb, Co and Cu) were recorded in plants irrigated with 25% agricultural wastewater and inoculated with *Azolla pinnata* and *Pseudomonas fluorescens* being 0.11, 0.09, 0.22 mg/g dry weight grain and 0.13, 0.12, 0.29 mg/g dry weight in straw respectively.

Key Words: Azolla pinnata, Agricultural Wastewater, Heavy Metals, Phytoremediation

ACKNOWLEDGEMENT

Praise and thanks be to **ALLAH**, the most merciful for assisting and directing me to the right way.

This work has been carried out under the supervision and direction of **Prof. Dr. Wedad EL-Tohamy El-Sayed Ewada**, Prof. Agric. Microbiol., Fac. Agric., Ain Shams University, as the first leader of this thesis, she has been supportive since the days I began working on this thesis.

I would to say a special words **Dr. Mona Mohamed Sayed Zayed** Associate Prof. Agric. Microbiol., Fac. Agric., Ain Shams University, who was involved in the validation survey for this thesis. Without her passionate participation and input, validation survey could not have been successfully conducted.

I would also like to acknowledge **Dr. Heba Mohamed Abd El-Aziz Khalil** Senior Researcher of Agric. Microbiol., Soils, Water and Environ. Res. Inst., ARC, Giza. for her very valuable comments on this thesis.

Special thanks are also extended to my practical teacher **Prof. Dr. Reda Mohamed El-Shahat,** Prof Agric. Microbiol., Soils, Water and Environ. Res. Inst., ARC, Giza. For his supporting, sincere help and providing all needed facilities necessary for carrying out this work.

CONTENTS

	Pag
LIST OF TABLES	VII
LIST OF FIGURES	IX
LIST OF PICTURES	XII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Water pollution	4
2.2. Heavy Metals in Aquatic Ecosystems	5
2.2.1. Lead	6
2.2.2. Copper	6
2.2.3. Cobalt	7
2.3. Disposing of heavy metals	7
2.4. Technologies for treatment of heavy metal contaminated	
groundwatergroundwater	7
2.4.1. Chemical treatment	8
2.4.2. Biological treatments	8
2.4.2.1. Phytoremediation	8
2.4.2.1.1. Properties of plants used in phytoremediation	9
2.4.2.1.2. Macrophytes	10
2.4.2.1.3. Potentiality of macrophytes in Accumulating Heavy	
Metals	10
2.5. Azolla sp. as a "Water fern"	11
2.5.1. Utilization of <i>Azolla</i>	12
2.5.2. The properties of <i>Azolla</i> as a phytoremediator	13
2.5.3. Taxonomy and Distribution	14
2.5.4. Chemical composition of <i>Azolla</i>	15
2.5.5. Reproduction	15
2.5.5.1. Vegetative reproduction	15
2.5.5.2. Sexually reproduction	15
2.5.6. Factors affecting <i>Azolla</i> 's growth	16
2.5.6.1. The environmental factors	16

2.5.6.1.1. Water
2.5.6.1.2. Temperature
2.5.6.1.3. Light intensity
2.5.6.1.4. Humidity
2.5.6.1.5. Growing seasons
2.5.6.2. Physico-Chemical Factors.
2.5.6.2.1. Nitrogen
2.5.6.2.2. Phosphorus
2.5.6.2.3. Salinity
2.5.6.2.4. pH
2.5.6.2.5. Other nutrients
2.5.7. Potentiality of Azolla in phytoremediation of heavy
metals
2.5.8. Role of <i>Azolla</i> in phytoremediation process
2.5.8.1. Active process
2.5.8.2. Passive process.
2.5.8.3. Location of Heavy Metals in <i>Azolla</i>
2.5.8.4. Mechanism of phytoremediation
2.5.8.4.1. Phytoextraction.
2.5.8.4.2. Phytofiltration or Rhizofiltration
2.5.8.4.3. Phytostabilization
2.5.8.4.4. Phytovolatilization.
2.5.8.4.5. Phytodegradation
2.6. Anabaena azollae
2.7. Pseudomonas fluorescens
3.MATERIAL AND METHODS
3.1. Materials
3.1.1. Microorganisms used
3.1.2. Media used
3.1.2.1. Yoshida medium
3.1.2.2. Peat moss medium

3.1.2.3. Soil medium.
3.1.2.4. King's medium
3.1.3. Waste Water Samples
3.1.4. Waste Water Analyses
3.2. Methods
Part One
3.2.1. Propagation of <i>Azolla pinnata</i>
3.2.1.1. Fresh weight
3.2.1.2. Dry weight
3.2.1.3. Doubling time
3.2.1.4. Total nitrogen.
3.2.1.5. Total phosphorus
3.2.1.6. Total Potassium.
3.2.1.7. Nitrogenase activity
Part Two:
3.2.2. Estimation of the growth efficiency of A. pinnata in
Yoshida medium supplemented with different heavy metals
3.2.2.1. Preparation of synthetic wastewater samples
3.2.2.2. Plant measurements.
Part Three:
3.2.3. Estimation of the efficiency of A. pinnata in
phytoremediation of agricultural wastewater contaminated with
(Pb ⁺⁺ , Co ⁺⁺ or Cu ⁺⁺)
3.2.3.1. Experimental design and treatment details
3.2.3.2. Parameters Measured
3.2.3.2.1. Growth parameters
3.2.3.2.2. Estimation of the total N, P and K of Azolla pinnata
fronds
3.2.3.2.3. Concentration of heavy metals (Pb ⁺⁺ , Co ⁺⁺ and Cu ⁺⁺)
in Azolla pinnata

3.2.3.2.3.1. Digestion of samples.
3.2.3.2.3.1.1. Sulphuric acid digestion
3.2.3.2.3.1.2. Perchloric acid digestion.
3.2.3.2.3.2. Heavy metals analysis
Part Four:
3.2.4. Net house Experiment
3.2.4.1. Rice experiment.
3.2.4.2. Wheat experiment
3.2.4.3. Tested parameters
3.2.4.3.1. Growth parameters.
3.2.4.3.2. Determination of NPK content of plants
3.2.4.3.3. Concentration of heavy metals (Pb++, Co++and Cu++)
in rice and wheat crops
3.2.5. Statistical analysis
RESULTS AND DISCUSSION
Part One:
4.1. The growth efficiency of Azolla pinnata in three different
media
4.1.1. Growth performance of Azolla pinnata grown in three
different media
4.1.2. Nitrogenase activity of Azolla pinnata grown in three
different media
4.1.3 Percentage of nitrogen, phosphorus and potassium in
Azolla pinnata grown in three different media
Part Two:
4.2. The growth efficiency of A. pinnata in Yoshida medium
supplemented with different heavy metals
4.2.1. Growth performance of <i>Azolla pinnata</i> during incubation
period as affected by the addition of different concentration from
Pb ⁺² on Yoshida medium

	Page
4.2.2. Growth performance of <i>Azolla pinnata</i> during incubation	
period as affected by the addition of different concentration from	
Co ⁺² on Yoshida medium.	47
4.2.3. Growth performance of Azolla pinnata during incubation	
period as affected by the addition of different concentration from	
Cu ⁺² on Yoshida medium	49
Part Three:	52
4.3. Estimation the capability of Azolla pinnata to grow and	
phytoremediate agricultural wastewaters contaminated with	
different heavy metals (Pb ⁺⁺ , Co ⁺⁺ and Cu ⁺⁺)	52
4.3.1. Effect of different concentrations of agricultural	
wastewater (drain 1) contaminated with Pb ⁺⁺ on fresh, dry	
weight (g/pot) and doubling time (day) of <i>Azolla pinnata</i> during	
the growth period.	57
4.3.2. Effect of different concentrations of agricultural	
wastewater contaminated with Pb ⁺² on NPK % in <i>Azolla pinnata</i>	
during the growth period.	57
4.3.3. Effect of different concentrations of agricultural	0,
wastewater contaminated with Pb ⁺² on the concentration of Pb ⁺²	
(mg/pot) in <i>Azolla pinnata</i> during growth period	57
4.3.4. Effect of different concentrations of agricultural	37
wastewater (drain 2) contaminated with Co ⁺² on fresh, dry	
•	
weight (g/pot) and doubling time (day) of <i>Azolla pinnata</i> during	50
the growth period.	58
4.3.5. Effect of different concentrations of agricultural	
wastewater contaminated with Co ⁺² on NPK % in <i>Azolla pinnata</i>	
during growth period.	60
4.3.6. Effect of different concentrations of agricultural	
wastewater contaminated with Co ⁺² on the concentration of Co ⁺²	
(mg/pot) in Azolla pinnata during growth period	62

	Page
4.3.7. Effect of different concentrations of agricultural	
wastewater (drain 3) contaminated with Cu ⁺² on fresh, dry	
weight (g/pot) and doubling time (day) of Azolla	
pinnata	63
4.3.8. Effect of different concentrations of agricultural	
wastewater contaminated with Cu ⁺² on NPK % in Azolla pinnata	
during growth period	66
4.3.9. Effect of different concentrations of agricultural	
wastewater contaminated with Cu ⁺² on the concentration of Cu ⁺²	
(mg/pot) in Azolla pinnata during growth period	68
Part Four:	70
4.4. Net house Experiment	70
4.4.1. Growth parameters of rice plants irrigated with different	
concentrations from contaminated agricultural wastewater and	
inoculated with Azolla pinnata and/or Pseudomonas	
fluorescens	70
4.4.2. NPK percentage in rice grain and straw inoculated with	
Azolla pinnata and/or Pseudomonas fluorescens and irrigated	
with different concentrations from contaminated agricultural	
wastewater	71
4.4.3. Concentration of heavy metals (mg/g dry weight) in rice	
grain and straw irrigated with different concentrations from	
contaminated agricultural wastewater and inoculated with Azolla	
pinnata and/or Pseudomonas fluorescens	73
4.4.4. Growth parameters of wheat plant irrigated with different	
concentrations from contaminated agricultural wastewater and	
inoculated with Azolla pinnata and/or Pseudomonas fluorescens	74
4.4.5.NPK percentage in wheat grain and straw irrigated with	
different concentrations from contaminated agricultural	
wastewater and inoculated with Azolla pinnata and/or	
Pseudomonas fluorescens	76

	Page
4.4.6. Concentration of heavy metals in wheat grain and straw	
irrigated with different concentrations from contaminated	
agricultural wastewater and treated with Azolla pinnata and/or	
Pseudomonas fluorescens	77
6. SUMMARY AND CONCLUSION	80
7. REFERENCES	88
9 ARARIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table (1)	Physical and chemical analyses of soil used in the	29
T 11 (2)	experiments	29
Table (2)	Physical and chemical analyses of agricultural	
	wastewater samples (mg/L) and the percentage of	
	NPK	30
Table (3)	Growth parameters of rice plants inoculated with	
	Azolla pinnata and/or Pseudomonas fluorescens	
	and irrigated with agricultural wastewater after 70	
	days	71
Table (4)	NPK (%) in rice plants inoculated with Azolla	
	pinnata and/or Pseudomonas fluorescens and	
	irrigated with agricultural wastewater after 70	
	days	72
Table (5)	Concentration of heavy metals(mg/g dry weight)	
	in rice plants inoculated with Azolla pinnata	
	and/or Pseudomonas fluorescens and irrigated	
	with agricultural wastewater after 70 days	74
Table (6)	Growth parameters of wheat plants inoculated	
	with Azolla pinnata and/or Pseudomonas	
	fluorescens and irrigated with agricultural	
	wastewater after 70 days	75
Table (7)	·	
(1)	pinnata and/or Pseudomonas fluorescens and	
	irrigated with agricultural wastewater after 70	
	days	77
Table (8)	Concentration of heavy metals (mg/g dry weight)	
14010 (0)	in wheat plants inoculated with Azolla pinnata	
	and/or <i>Pseudomonas fluorescens</i> and irrigated	
	v G	70
	with agricultural wastewater after 70 days	78

LIST OF FIGURES

Fig. No.		Page
Fig. (1)	Fresh weight (g/pot) of Azolla pinnata during 25 days	
	of growth on three different media	40
Fig. (2)	Dry weight (g/pot) of Azolla pinnata during 25 days of	
	growth on three different media	40
Fig. (3)	Doubling time (days) of Azolla pinnata during 25 days	
	of growth on three different media	41
Fig. (4)	Nitrogenase activity (µ mol C ₂ H ₄ /g dr. wt./h.) of	
	Azolla pinnata during 25 days of growth on three	
	different media	42
Fig. (5)	Nitrogen (%) in Azolla pinnata during 25 days of	
	growth on three different media	43
Fig. (6)	Phosphors (%) in Azolla pinnata during 25 days of	
	growth on three different media	43
Fig. (7)	Potassium (%) in Azolla pinnata during 25 days of	
	growth on three different media	44
Fig. (8)	Effect of different concentrations of Pb ⁺² on fresh	
	weight (g/pot) of Azolla pinnata cultivated on Yoshida	
	medium	46
Fig. (9)	Effect of different concentrations of Pb+2 on dry	
	weight(g/pot) of Azolla pinnata cultivated on Yoshida	
	medium	46
Fig. (10)	Effect of different concentrations of Pb ⁺² on doubling	
	time(days)of Azolla pinnata cultivated on Yoshida	
	medium	47
Fig. (11)	Effect of different concentrations of Co+2 on fresh	
	weight(g/pot) of Azolla pinnata cultivated on Yoshida	
	medium	48
Fig. (12)	Effect of different concentrations of Co ⁺² on dry	
	weight (g/pot) of Azolla pinnata cultivated on Yoshida	
	medium	49