

Cairo University Faculty of Veterinary Medicine Department of Toxicology and Forensic Medicine

IMMUNO- AND GENOTOXICITY INVESTIGATION ON GESAPRIM HERBICIDE IN RABBITS AND THE AMELIORATING ROLE OF AKROPOWER

Thesis Presented by

AHMED MOHAMED AHMED HUSSIEN

M. V. Sc., Fac. Vet. Med., Cairo Univ., 2014

For Ph.D. Degree in

Veterinary Medicine (Toxicology and Forensic Medicine)

Under Supervision of

Prof. Dr. ASHRAF MOHAMMED HASSAN MORGAN

Professor of Toxicology and Forensic Medicine Faculty of Veterinary Medicine - Cairo University

Dr. MARWA IBRAHIM ABD-ELHAMID

Assistant Professor of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine - Cairo University

SUPERVISION SHEET

Thesis title:

"Immuno- and genotoxicity investigation on Gesaprim herbicide in rabbits and the ameliorating role of Akropower"

Ph.D. Thesis presented by:

Ahmed Mohamed Ahmed Hussien

(M. V. Sc., Cairo University, 2014)

Under supervision of:

Prof. Dr. Ashraf Mohammed Hassan Morgan

Professor of Toxicology and Forensic Medicine
Faculty of Veterinary Medicine, Cairo University

Dr. Marwa Ibrahim Abd-Elhamid

Assistant Professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University

Cairo University Faculty of Veterinary Medicine Department of Toxicology; Forensic Medicine and Veterinary Regulations

Name:	Ahmed Mohamed Ahmed Hussien
Present Job:	Assistant lecturer
Scientific Degree:	Ph.D. of Veterinary Medicine
Specialization:	Toxicology, Forensic Medicine and Veterinary Regulations
Supervisors:	Prof. Dr. Ashraf Mohammed Hassan Morgan
	Dr. Marwa Ibrahim Abd-Elhamid
Thesis Title:	"Immuno- and genotoxicity investigation on Gesaprim herbicide
	in rabbits and the ameliorating role of akropower"

ABSTRACT

Atrazine (Gesaprim®) is the most widely used broad-spectrum herbicide in the universe. Unintentional overspray of Atrazine (ATR) poses a potential immune- and genotoxic impacts. Akropower® is a nutritional adjuvant, consists mainly of licorice root extract fermented with Aspergillus oryzae (glycyrrhizic acid); vitamin c (ascorbic acid) and butylated hydroxy toluene (BHT). The molecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. We aimed at elucidating the exact immuneand genotoxic mechanisms of ATR in rabbits and the ameliorating role of Akropower® against such toxic effects. Forty male New Zealand white rabbits (1.5 kg \pm 20%) were utilized and appointed into 4 equal groups, group 1: control; group 2: Received ATR at 1/10 LD₅₀ (2475 ppm) via food; group 3: Received Akropower at 1 ml/liter/day via drinking water; group 4: Received both ATR and Akropower associatively by the same mentioned dosage and course. Atrazine and Akropower exposure was accomplished for 60 days. Both control and treated animals were vaccinated after 4 weeks of experiment by s/c injection of 0.5 ml of rabbit hemorrhagic disease virus (RHDV). Atrazine exposure significant reduction in lymphoid organs weight; significant decrease in serum total protein and albumin levels; significant decrease in serum RHDV antibody titer only after four weeks of vaccination; up-regulation of spleen Fas and Caspase-3 genes; down-regulation of thymus IL- 9 gene; significant decrease in the diameter and thickness of skin reaction to tuberculin; leucopenia; lymphopenia beside induction of oxidative stress (significantly increased blood MDA and decreased GSH level). Histopathological alterations in liver, spleen and thymus gland were also observed. In addition, marked apoptosis in the spleen and thymus gland were recorded on immunohistochemical examination by Caspase-3 technique. On the other hand, marked improvement of the deteriorated parameters and histopathological alterations were recorded on the co-administration of Akropower with Atrazine. In conclusion, induction of apoptosis by over expression of spleen Fas and Caspase-3 genes that mediate the extrinsic pathway; down regulation of thymus IL-9 gene that suppresses cell proliferation and induction of oxidative stress could give a new explanation for the exact immune- and genotoxic mechanisms of Atrazine. Akropower normalizes ATR-induced immune- and genotoxicity by promoting the antioxidant capability and consequently reinforces the immune function and suppresses apoptosis.

Keywords: Atrazine, Akropower, immunotoxicity, Fas, Caspase-3, IL-9, rabbits.

ACKNOWLEDGEMENT

First and above all, praises to the light, our god, who guides us through the way. Thanks god for giving me assistance toward the achievement of this work.

I am forever grateful to my supervisor, **Prof. Dr. Ashraf Mohammed Hassan Morgan**, Professor of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, who supported me throughout his supervision on my Master and this Ph.D. thesis with his patience and knowledge whilst allowing me the room to work in my own way. Without his encouragement and efforts, this Ph.D. thesis, too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

Also, I would like to convey my warmest gratitude to my co-supervisor, **Dr**. **Marwa Ibrahim Abd-ELhamid**, Assistant Professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, for her guidance, generous contribution of knowledge and experience, valuable comments and encouragement from the start until the end of my study.

My great thanks to my colleague **Dr. Merihan Esam Ali** Assistant lecturer of Pathology, Faculty of Veterinary Medicine, Cairo University, for her kind help in the histopathological examination.

I am grateful to the staff members and my colleagues in Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, whose encouraging words kept me going.

Last but not the least; I would like to thank my family for supporting me spiritually throughout my academic trajectory.

CONTENTS

ABSTRACT	Ι
ACKNOWLEDGEMENT	II
LIST OF TABLES	VI
LIST OF FIGURES	VII
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Atrazine (Gesaprim®)	6
1.1. Atrazine toxicokinetic	7
1.1.1. Absorption	7
1.1.2. Distribution	8
1.1.3. Metabolism	9
1.1.4. Elimination	9
1.2. Atrazine toxicodynamics and systemic effects	10
1.2.1. Acute toxicity	10
1.2.2. Chronic toxicity	11
1.2.3. Immunotoxicity	12
1.2.4. Genotoxicity	16
1.2.5. Induction of oxidative stress	20
1.2.6. Hepatotoxicity	23
2. Protection against ATR- induced toxic effects using Akropower®	24
2.1. Akropower® main actions	25
2.1.1. The immunostimulant action	25
2.1.2. The antioxidant action	30
MATERIALS AND METHODS	36
A. Materials	36
1. Animals	36
2. Chemicals	36
2.1. The tested herbicide, Atrazine (Gesaprim®)	36
2.2. The tested protective agent, Akropower®	37
2.3. Chemicals used in immnuo- and geno-toxicity	38
investigations	
2.4. Chemicals used in biochemical investigations	41

(assessment of oxidative stress in blood)	
2.5. Chemicals used in histopathological and	41
immunohistochemical investigations	
3. Equipments	41
B. Methods	42
Experimental protocol and animal grouping	42
1. Methods used for assessment of humoral	43
immune response	
1.1. Body and organs weight	43
1.2. Blood protein levels	44
1.3. Determination of RHDV antibody titer using HA	I 44
test	
1.4. Quantification of spleen Fas and Caspase-III	44
genes mRNA (apoptosis markers) level of	
expression using real time RT- PCR	
1.4.1. Total RNA extraction	44
1.4.2. Reverse transcriptase polymerase chain	47
reaction (RT- PCR)	10
1.4.3. Real time PCR (qPCR)	48
2. Methods used for assessment of cell-mediated	50
immune response (CMIR)	
2.1. Quantification of Thymus cytokines, IL-9	50
(apoptosis marker) and IFN-γ (CMI regulator)	
mRNA genes level of expression using real	
time RT- PCR	50
2.2. Delayed-type hypersensitivity	50
2.3. Total and differential leukocyte counts	51
3. Methods used for biochemical investigations	51
3.1. Preparation of blood samples for measurement of	51
MDA, GSH, CAT and SOD activities	
3.2. Measurement of the lipid peroxidation product "MDA" level	52
3.3. Measurement of GSH content	53
3.4. Measurement of CAT activity	53
•	
3.5. Measurement of SOD activity 4. Mathods used for historiately	54 55
4. Methods used for histopathological	55
investigation	

5.	Meth	nods used for immunohistochemical	55
	inves	stigation	
6.	Meth	nods used for statistical Analysis	55
RI	ESUL	TS	56
1.	Effec	ts on the humoral immune response	56
	1.1.	Effects on the body weight	56
	1.2.		57
	1.3.	Effects on blood proteins level	60
	1.4.	Effects on serum RHDV antibody titers	62
	1.5.	Effects on the expression levels of spleen Fas	64
		and Caspase-III genes	
2.	Effec	ts on cell mediated immune response	66
	2.1.	Effects on the expression levels of thymus IL-9	66
		and IFN-γ genes	
	2.2.	L	68
	2.3.	Effects on total and differential leukocytic	69
		counts	
3.		ts on the blood lipid peroxidation product	72
		A"; GSH contents; CAT and SOD activitie	<u> </u>
4.		pathological results	74
		Effects on the liver	74
		Effects on the spleen	75
	4.3.	, E	76
		unohistochemical results	76
-		SSION	85
C	ONCI	LUSION	97
RI	ECON	MMENDATIONS	98
SU	JMM	ARY	99
REFERENCES		103	
Al	ABBREVIATIONS		132
Al	RABI	C SUMMARY	2
Al	RABI	C ABSTRACT	1

LIST OF TABLES

No.	Title	Page
1	Final body weight gain (g) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	56
2	Liver, spleen and thymus weights (g) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	58
3	Serum total protein; albumin; globulin levels and A/G ratio (g/dl) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	61
4	Serum RHDV antibody titer* at zero, two and four weeks of vaccination of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	63
5	The expression levels of spleen Fas and Caspase-3 genes of ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	65
6	The expression levels of thymus IL-9 and IFN-γ genes of ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	67
7	Diameter and thickness of skin reaction to tuberculin of control; ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	68
8	Total and differential leukocytic counts of control, ATR (2475 ppm in food) and/or Akropower (1 ml / L in drinking water)-exposed rabbits for 60 days	70
9	Blood MDA (nmol/ml); GSH (mg/dl) levels and CAT (U/L); SOD (U/ml) activities of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days	73

LIST OF FIGURES

No.	Title	Page
1	Final body weight gain (g) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	57
2	Liver weight (g) of control, ATR (2475 ppm in food) and/ or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	59
3	Spleen and thymus gland weights (g) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	59
4	Serum total protein, albumin, globulin levels and A/G ratio (g/ dl) of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	61
5	Serum RHDV antibody titer at zero, two and four weeks of vaccination of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	63
6	The expression levels of spleen Fas and Caspase-3 genes of ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	65
7	The expression levels of thymus IL-9 and IFN-γ genes of ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	67
8	Diameter and thickness (mm) of skin reaction to tuberculin of control, ATR (2475 ppm in food)	69

	and/or Akropower (1 ml/L in drinking water)-	
	exposed rabbits for 60 days.	
9	Total leukocytic counts of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	71
10	Differential leukocytic counts of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	71
11	Blood MDA (nmol/ml) and GSH (mg/dl) levels of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	73
12	Blood CAT(U/L) and SOD (U/ml) activities of control, ATR (2475 ppm in food) and/or Akropower (1 ml/L in drinking water)- exposed rabbits for 60 days.	74
13	Liver's photomicrograph of a control rabbit showing normal arrangement of hepatocytes (H&E, X 100).	77
14	Liver of an ATR-exposed rabbit showing haemorrhages, multiple focal aggregations of inflammatory cells and focal necrotic areas (H&E, X 100).	77
15	Liver's photomicrograph of an ATR- exposed rabbit showing vacuolar degeneration (a), multiple focal aggregations of inflammatory cells mainly macrophages, lymphocytes with activation of kupffer cells (b) and haemorrhages (c) (H&E, X 400).	77
16	High magnification of Fig. (15) showing vacuolar degeneration (a), multiple focal aggregations of inflammatory cells mainly macrophages, lymphocytes with activation of kupffer cells (b)	77

	and haemorrhages (c) (H&E, X 1000).	
	-	
17	Liver's photomicrograph of an Akropower- treated	78
17	rabbit showing normal arrangement of hepatocytes	70
	(H&E, X 100).	
10	Liver of an ATR plus Akropower- treated rabbit	70
18	showing mild vacuolar degeneration (a) beside	78
	mild hemorrhages (b) (H&E, X 400).	
19	Spleen of a control rabbit showing normal	78
	appearance of white and red pulps (H&E, X 100).	
20	High magnification of Fig. (19) showing normal	78
20	appearance of white and red pulps (H&E, X 400).	70
	Spleen's photomicrograph of an ATR-exposed	
21	rabbit showing severe depletion of lymphoid	79
	follicles (H&E, X 100).	
22	High magnification of Fig. (21) showing severe	79
44	depletion of lymphoid follicles (H&E, X 400).	17
23	High magnification of Fig. (22) showing severe	79
43	depletion of lymphoid follicles (H&E, X 1000).	19
	Spleen of an Akropower- alone- treated rabbit	
24	showing hyperplasia of lymphoid follicles (white	79
	pulp) (H&E, X 400).	
	Spleen's photomicrograph of an ATR plus	
25	Akropower- treated rabbit showing slight depletion	80
	of lymphoid follicles (white pulp) (H&E, X 100).	
	High magnification of Fig. (25) showing slight	
26	depletion of lymphoid follicles (white pulp) (H&E,	80
	X 1000).	
	Thymus's photomicrograph of a control rabbit	
27	showing normal appearance of cortex and medulla	80
_,		00
	(H&E, X 100).	
28	Thymus of an ATR-exposed rabbit showing severe	80
40	haemorrhages (a) and multiple aggregations of	συ
	inflammatory cells (b) (H&E, X 100)	

29	High magnification of Fig. (28) showing severe haemorrhages (a) and multiple aggregations of inflammatory cells (b) (H&E, X 400).	81
30	Thymus of an ATR-exposed rabbit showing depletion of lymphoid follicles (H&E, X 1000).	81
31	Thymus's photomicrograph of an Akropower alone- treated rabbit showing hyperplasia of lymphoid follicles (H&E, X 1000).	81
32	Thymus of an ATR plus Akropower- treated rabbit showing slight depletion of lymphoid follicles (a) and mild aggregation of inflammatory cells (b) (H&E, X 400).	81
33	Spleen (By immune-histochemistry, Caspase-3 technique) of a control rabbit showing no apoptosis (X 100).	82
34	High magnification of Fig. (33) showing no apoptosis (X 400).	82
35	Spleen (By immune-histochemistry, Caspase-3 technique) of an ATR-exposed rabbit showing apoptosis (X 100).	82
36	High magnification of Fig (35) showing apoptosis (X 400).	82
37	Spleen (By immune-histochemistry, Caspase-3 technique) of an Akropower- alone- treated rabbit showing no apoptosis (X 400).	83
38	Spleen (By immune-histochemistry, Caspase-3 technique) of an ATR plus Akropower- treated rabbit showing no apoptosis (X 100).	83
39	High magnification of Fig (38) showing no apoptosis (X 1000).	83
40	Thymus (By immune-histochemistry, Caspase-3 technique) of a control rabbit showing no apoptosis (X 100).	83

41	High magnification of Fig. (40) showing no apoptosis ((By immune-histochemistry, Caspase-3 technique, X 1000).	84
42	Thymus (By immune-histochemistry, Caspase-3 technique) of an ATR- exposed rabbit showing apoptosis (X 1000).	84
43	Thymus's photomicrographs (By immune-histochemistry, Caspase-3 technique) of an Akropower- treated rabbit showing no apoptosis (X1000).	84
44	Thymus ((By immune-histochemistry, Caspase-3 technique, X 1000) of an ATR plus Akropower-treated rabbit showing no apoptosis.	84

INTRODUCTION

In the present era of green revolution, human population is being expanding swiftly. Forests have been utilized for abode construction, deteriorating environmental balance on one hand (Ullah, 2014). On the other hand we are confronted with the emerging and expanding problem of pollutants (AusAID, 1996; Jacinto, 1997 and Klumpp et al., 2002).

Pollutants include untreated effluents from industries; domestic wastes and distinctive chemicals such as pesticides used in agriculture or in safety measures (Gagnaire et al., 2004; Jain et al., 2005; Mustapha, 2008; Naeem et al., 2010 and Abu-Darwish et al., 2011).

Pesticides are designed to control pests, but they can also be toxic for undesirable plants and mammals (Nesheim *et al.*, 2017).

Herbicides, usually known as weed killers, have become an essential part of landscape maintenance since chemical weed control frequently is the more economical route than hand or mechanical weeding (Kellogg et al., 2000).

Atrazine "ATR" (Gesaprim®) [(6-chloro-N-ethyl-N'-(1-methylethyl)-triazine-2,4-diamine)] is a selective post-emergence chlorotriazine herbicide worldwide used in many countries for the control of broad leaf and grassy weeds in agricultural crops (**Cerdeira** *et al.*, 2005). It is applied on crops such as corn, sugarcane, sorghum, pineapple and in conifer reforestation plantings (**Dong** *et al.*, 2009).

Environmental or occupational exposure to ATR herbicide can produce toxic consequences in animals and humans (Hayes *et al.*, 2011; Rinsky *et al.*, 2012 and Gao *et al.*, 2016).

The immunotoxic potential of ATR was previously studied where it suppressed the innate immune response (Soltanian, 2016), and the cell-mediated; humoral and nonspecific immune function (Chen et al., 2013 and Thueson et al., 2015). It causes misbalance in the major organs of the immune system, specifically thymus gland, suggesting that it may be the main target of ATR (Chen et al., 2013). Moreover, splenocytes and other lymphoid cells' apoptosis was also recorded following ATR exposure (Zhang et al., 2011; Sharma et al., 2014; Song et al., 2015 and Yuan et al., 2017). The induction of apoptosis can be a possible mechanism of ATR that may compromise the immune function (Chen et al., 2013).

Akropower® is a nutritional supplement, consists of licorice root extract fermented with aspergillus oryzae, malic acid, zinc sulfate, vitamins (ascorbic acid, B1, B2, B6, B12, pantothenic acid and biotin), choline chloride, inositol, sodium propionate and butylated hydroxy toluene (BHT) (www.akronbio.com).

Previous studies confirmed the immunostimulant and/or antioxidant actions of the individual Akropower® components including glycyrrhizic acid (Michaelis et al., 2010); glycyrrhetinic acid (GA) (Mohammed et al., 2015 and Abd El-Twab et al., 2016); ascorbic (Adikwu and Deo, 2013) and malic acids (Al-Qayim and Mashi, 2014).