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Abstract

Indoor scene understanding is a challenging problem in
computer vision. To achieve an accurate solution for this
task, a model that can exploit discriminating information
between different scene categories and objects is necessary.

This thesis presents a framework for scene
understanding which includes several components of
learning models, segmentation, object recognition and
tracking. A comprehensive study for supervised learning
models for recognizing indoor scenes is presented. The study
compares between several “Shallow Learning” models
against the recent approach “Deep Learning”. Furthermore,
the robustness of methods is tested against environment
changes such as: contrast degradation, additive blurring and
additive noise.

A segmentation method is proposed for object
recognition which relies on depth for accurate segmentation
preprocessing before applying learning models. The process
is applied on both RGB and depth images to produce two
segmented images. Finally, the result of both segmented
images is combined.

For object recognition, a hierarchical object

recognition scheme is proposed based on multiple instances
i



of shallow learning models. The first level in hierarchy
classifies objects based on the scene category, while the
second level classifies the objects based on their occupied
area, and the third and last level classifies the objects based
on Histogram of Oriented Gradient descriptor of each object.

The recognized objects are tracked in image sequence
by extracting Shi Tomasi’s good features, then the new
location for these extracted features are to be located in the
next image using pyramid Lucas and Kanade tracker.
Finally, a method for defining the relation between
recognized objects in the scene is proposed.

All the proposed methods in the framework have been
tested on the standard benchmark MIT-indoor datasets. Four
experiments are presented: the first experiment compares
Shallow vs Deep Learning. Experiments shows that Deep
learning models outperform the shallow learning models by
a huge gap with respect to classification accuracy, especially
the deep architecture called “VGG-16 net” outperforms all
techniques. The additional step of including a fine-tuning for
a pre-trained “VGG-16 net” proved to be highly significant
in improving the classification accuracy that reached
85.43%, and at a cost of 20% reduction savings in training

time.



The second experiment tests the robustness of
presented learning models. The HOG-SVM shows
outstanding robustness against contrast degradation and
blurring more than deep learning and less time and space,
despite the lower accuracy performance.

The third experiment tests the proposed segmentation
algorithm. Results show effectiveness with respect to
average execution time that reaches 11sec per image, which
is faster than other algorithms in related work.
Experimentation with the RGB-D dataset consisting of 1200
images “NYU V2” of indoor scenes showed that 73.41% are
correctly segmented images.

The Fourth experiment shows that the proposed
hierarchical classification reaches 65.73% classification
accuracy. The result of this hierarchical classification is used
for training each scene category in the multiple deep learning
model VGG-16 net. The achieved accuracy for scene
recognition is 89.24%. Performing Tracking over an image
sequence for a sequence of 10 frames proved to improve the
speed performance of the indoor scene understanding
framework by ten times, with the process applied on first
frame only and then only on the new part of scene including

the new objects.
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