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Abstract  

 

Indoor scene understanding is a challenging problem in 

computer vision. To achieve an accurate solution for this 

task, a model that can exploit discriminating information 

between different scene categories and objects is necessary. 

This thesis presents a framework for scene 

understanding which includes several components of 

learning models, segmentation, object recognition and 

tracking. A comprehensive study for supervised learning 

models for recognizing indoor scenes is presented. The study 

compares between several “Shallow Learning” models 

against the recent approach “Deep Learning”. Furthermore, 

the robustness of methods is tested against environment 

changes such as: contrast degradation, additive blurring and 

additive noise.  

A segmentation method is proposed for object 

recognition which relies on depth for accurate segmentation 

preprocessing before applying learning models. The process 

is applied on both RGB and depth images to produce two 

segmented images. Finally, the result of both segmented 

images is combined.  

For object recognition, a hierarchical object 

recognition scheme is proposed based on multiple instances 
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of shallow learning models. The first level in hierarchy 

classifies objects based on the scene category, while the 

second level classifies the objects based on their occupied 

area, and the third and last level classifies the objects based 

on Histogram of Oriented Gradient descriptor of each object. 

The recognized objects are tracked in image sequence 

by extracting Shi Tomasi’s good features, then the new 

location for these extracted features are to be located in the 

next image using pyramid Lucas and Kanade tracker.  

Finally, a method for defining the relation between 

recognized objects in the scene is proposed. 

All the proposed methods in the framework have been 

tested on the standard benchmark MIT-indoor datasets. Four 

experiments are presented: the first experiment compares 

Shallow vs Deep Learning. Experiments shows that Deep 

learning models outperform the shallow learning models by 

a huge gap with respect to classification accuracy, especially 

the deep architecture called “VGG-16 net” outperforms all 

techniques. The additional step of including a fine-tuning for 

a pre-trained “VGG-16 net” proved to be highly significant 

in improving the classification accuracy that reached 

85.43%, and at a cost of 20% reduction savings in training 

time. 
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The second experiment tests the robustness of 

presented learning models. The HOG-SVM shows 

outstanding robustness against contrast degradation and 

blurring more than deep learning and less time and space, 

despite the lower accuracy performance. 

The third experiment tests the proposed segmentation 

algorithm. Results show effectiveness with respect to 

average execution time that reaches 11sec per image, which 

is faster than other algorithms in related work. 

Experimentation with the RGB-D dataset consisting of 1200 

images “NYU V2” of indoor scenes showed that 73.41% are 

correctly segmented images.   

The Fourth experiment shows that the proposed 

hierarchical classification reaches 65.73% classification 

accuracy. The result of this hierarchical classification is used 

for training each scene category in the multiple deep learning 

model VGG-16 net. The achieved accuracy for scene 

recognition is 89.24%. Performing Tracking over an image 

sequence for a sequence of 10 frames proved to improve the 

speed performance of the indoor scene understanding 

framework by ten times, with the process applied on first 

frame only and then only on the new part of scene including 

the new objects.  
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supervised learning, shallow learning, deep learning, RGB-
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