Developing a Method for 3D Scene Understanding Using Image Sequence

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By **Islam Ibrahim Fouad Ahmed**

Teaching Assistant at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Mostafa Gadal-Haqq M. Mostafa

Professor in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Sherine Rady Abdel Ghany

Assistant Professor in Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University

Acknowledgment

I acknowledge my deep gratitude to ALLAH for providing me with the strength to complete this work on a level that I hope will please the reader.

I wish to express my sincere and heartfelt appreciation to my supervisor; Prof. Mostafa Gadal-Haqq for his supervision, resourceful ideas and suggestions that helped in enhancing my work.

Special thanks are due to my supervisor Dr. Sherine Rady for her continuous guidance and encouragement in achieving this work.

Without their assistance and dedicated involvement in every step throughout the process, this thesis would have never been accomplished. I would like to thank them very much for their support and understanding.

Finally, with all my appreciation and love that no words can describe, my deepest gratitude goes to my family for their love, prayers and endless support.

Abstract

Indoor scene understanding is a challenging problem in computer vision. To achieve an accurate solution for this task, a model that can exploit discriminating information between different scene categories and objects is necessary.

This thesis presents a framework for scene understanding which includes several components of learning models, segmentation, object recognition and tracking. A comprehensive study for supervised learning models for recognizing indoor scenes is presented. The study compares between several "Shallow Learning" models against the recent approach "Deep Learning". Furthermore, the robustness of methods is tested against environment changes such as: contrast degradation, additive blurring and additive noise.

A segmentation method is proposed for object recognition which relies on depth for accurate segmentation preprocessing before applying learning models. The process is applied on both RGB and depth images to produce two segmented images. Finally, the result of both segmented images is combined.

For object recognition, a hierarchical object recognition scheme is proposed based on multiple instances

of shallow learning models. The first level in hierarchy classifies objects based on the scene category, while the second level classifies the objects based on their occupied area, and the third and last level classifies the objects based on Histogram of Oriented Gradient descriptor of each object.

The recognized objects are tracked in image sequence by extracting Shi Tomasi's good features, then the new location for these extracted features are to be located in the next image using pyramid Lucas and Kanade tracker. Finally, a method for defining the relation between recognized objects in the scene is proposed.

All the proposed methods in the framework have been tested on the standard benchmark MIT-indoor datasets. Four experiments are presented: the first experiment compares Shallow vs Deep Learning. Experiments shows that Deep learning models outperform the shallow learning models by a huge gap with respect to classification accuracy, especially the deep architecture called "VGG-16 net" outperforms all techniques. The additional step of including a fine-tuning for a pre-trained "VGG-16 net" proved to be highly significant in improving the classification accuracy that reached 85.43%, and at a cost of 20% reduction savings in training time.

The second experiment tests the robustness of presented learning models. The HOG-SVM shows outstanding robustness against contrast degradation and blurring more than deep learning and less time and space, despite the lower accuracy performance.

The third experiment tests the proposed segmentation algorithm. Results show effectiveness with respect to average execution time that reaches 11sec per image, which is faster than other algorithms in related work. Experimentation with the RGB-D dataset consisting of 1200 images "NYU V2" of indoor scenes showed that 73.41% are correctly segmented images.

The Fourth experiment shows that the proposed hierarchical classification reaches 65.73% classification accuracy. The result of this hierarchical classification is used for training each scene category in the multiple deep learning model VGG-16 net. The achieved accuracy for scene recognition is 89.24%. Performing Tracking over an image sequence for a sequence of 10 frames proved to improve the speed performance of the indoor scene understanding framework by ten times, with the process applied on first frame only and then only on the new part of scene including the new objects.

Keywords: Scene understanding, image recognition, supervised learning, shallow learning, deep learning, RGB-D image, image segmentation, object recognition, tracking.

List of Publications

- 1- Fouad, I. I., Rady, S., & Mostafa, M. G., "Indoor Scene Classification: A Comparative Study of Feature Detectors and Local Descriptors," *Proceedings of the 10th International Conference on Informatics and Systems*, 2016, pp. 215-221.
- 2- Fouad, I. I., Rady, S., & Mostafa, M. G., "Enhancing RGB-D Image Segmentation using Edge Detection and Morphological Operations" *Proceedings of the 12th International Conference on Computer Engineering and Systems ICCES*, 2017, pp. 353-358.

Table of Contents

Acknowledg	gment.		II.
Abstract]	\prod
List of Publ	ications	s V	/II
Table of Co	ntents.	V	Ш
List of Figu	res	Σ	Ш
List of Tabl	es	XVI	Ш
List of Abbi	reviatio	onsXVIII	Ш
Chapter 1.	Introd	uction	2
1.1	Overv	riew	2
1.2	Motiv	ation	5
1.3	Objec	tives	6
1.4	Metho	odology	7
1.5		butions	
1.6	Thesis	S Organization	10
Chapter 2.	Backg	ground and Related work	14
2.1	Backg	round	14
	2.1.1	Image Recognition Systems	14
	2.1.2	Learning Models	15
	2.1.3	RGB-D Images	17
	2.1.4	Image Segmentation	18
	2.1.5	Object Recognition	19
2.2		ed Work	
	2.2.1	Vision-based Scene recognition	20
		2.2.1.1 Scene recognition using low	
		level features	20
		2.2.1.2 Combined local & global	
		features for scene	
		recognition	25
		2.2.1.3 Scene recognition through	
		object detection	
		2.2.1.4 Scene recognition using deep	
		learning	
	2.2.2	RGB-D indoor scene segmentation	28

Chapter 3.	The st	udy of Shallow Learning techniques for
_	indoo	r scene classification32
3.1	Featur	re Extraction32
	3.1.1	SIFT Feature Detector/Descriptor 33
	3.1.2	-
	3.1.3	-
	3.1.4	BRISK Feature Detector/Descriptor43
	3.1.5	
	3.1.6	MSER Feature Detector48
	3.1.7	HOG Local Descriptor49
	3.1.8	LBP Local Descriptor50
3.2	Classi	fication52
	3.2.1	SVM52
	3.2.2	K-NN55
3.3	Exper	iments and results56
	3.3.1	Performance analysis of different
		feature extraction / classification
		methods59
	3.3.2	Effect of image distortions caused by
		environment64
		3.3.2.1 Contrast Degradation64
		3.3.2.2 Additive Blurring67
		3.3.2.3 Additive Gaussian Noise 69
3.4	Summ	nary and Conclusion71
Chapter 4.	Deep	Learning for indoor scene recognition.74
4.1	Deep	Learning Architectures77
	4.1.1	GoogLeNet77
		VGG-16 Net81
	4.1.3	PlacesCNN85
4.2		iments and results86
	4.2.1	Performance of deep learning vs.
		shallow learning86
	4.2.2	Performance of pre-trained models 89
	4.2.3	Fine-tuning CNN models92
		Effect of image distortions caused by
		environment93

		4.2.4.1	Contrast degradation	94
			Additive Blurring	
			Additive Gaussian noise.	
4.3	Summa		Conclusion	
Chapter 5.			D scene and classifying ob	
1	_	_	nce	_
5.1	_	_	Scene Dataset	
5.2			ne Segmentation	
			nage Segmentation	
		-	Region Growing method	
			Segmentation using Obje	
			boundaries	
		5.2.1.3		
			boundaries improvement	
	5.2.2	RGB Im	age Segmentation	
			Image Segmentation	
5.3			bject Classification	
			ojects direct classification.	
			ical scene object	
			ation	125
	5.3.3	Hierarch	ical scene object classifica	ıtion
			nstraints	
	5.3.4		lassification using deep	
		•		126
5.4	Recogn	_	ects tracking in image	
	sequer	nce		127
5.5	Summa	arizing i	mage sequence in a sem	ıantic
		_		
5.6			Conclusion	
Chapter 6.	Conclu	ision and	Future Work	137
6.1	Conclu	ision		137
6.2	Future	work		141
References				143

List of Figures

Fig. 1.1	Illustration of scene understanding process 9
Fig.2.1	Sample RGB and depth images taken by Microsoft
	Kinect
Fig. 2.2	Color-based feature for (a) city and (b) for landscape image;
	(c) & (d) show the color histogram features for (a) & (b); (e)
	& (f) show the coherent color bins for (a) & (b); (g) & (h)
	show the non-coherent color bins for (a) & (b)21
Fig. 2.3	Edge-based feature for (a) city and (b) for landscape image;
	(c) & (d) show the edge direction histogram features for (a)
	& (b); (e) & (f) show the coherent edge direction bins for (a)
	& (b); (g) & (h) show the non-coherent edge direction bins
	for (a) & (b)
Fig. 2.4	2D Feature space plots showing (a) edge detection
	coherence vector and (b) coherence vectors; * represents the
	landscape patterns and ◊ represents the city pattern; only a
	subset of 2716 patterns have been plotted here for clarity of
	display
Fig. 2.5	Two-stage classification combining color and texture, such
	that "in" means indoor and "out" means outdoor [30]24
Fig. 2.6	Example of a scene prototype. a) Scene prototype with
	candidate ROI. b) Illustration of the visual words and the
	regions used to compute histograms25
Fig. 2.7	Multiclass average precision performance for the baseline
	and four different model versions26
Fig .2.8	The results of scene recognition through object detection on
	an office environment27

Fig. 2.9	Joint deep multiple instance learning framework for learning
	correspondences between keywords and image
	regions
Fig. 2.10	Illustration of proposed framework for jointly learning
	image regions and keywords. Here P stands for a pooling
	layer, C for a convolution layer, and F for a fully connected
	layer
Fig. 2.11	Illustration of RGB-D segmentation30
Fig. 2.12	Sample output for the proposed method [45]. (a) RGB
	image, (b) Depth image, (c) Result of segmentation30
Fig. 3.1	Difference of Gaussian pyramid34
Fig. 3.2	Maxima and minima of the difference-of-Gaussian images
	are detected by comparing a pixel (marked with X) to its 26
	neighbors35
Fig. 3.3	SIFT keypoint descriptor
Fig. 3.4	Using integral images, it takes only three additions to
	calculate the sum of intensities inside a rectangular region
	of any size38
Fig. 3.5	Iteratively reducing the image size (left). The use of integral
	images allows the up-scaling of the filter at constant cost
	(right)39
Fig. 3.6	Haar wavelet filters to compute the responses in x (left) and
	y direction (right). The dark parts have the weight -1 and the
	light parts +140
Fig. 3.7	Orientation assignment in SURF40
Fig. 3.8	To build the descriptor, an oriented quadratic grid with
	4×4 square sub-regions is laid over the interest point (left).
	For each square, the wavelet responses are computed41

Fig. 3.9	Image showing the interest point under test and the 16 pixels
	on the circle42
Fig. 3.10	Scale-space interest point detection in BRISK43
Fig. 3.11	The BRISK sampling pattern44
Fig. 3.12	Circularly symmetric neighbor sets. Samples that do not
	exactly match the pixel grid are obtained via
	interpolation50
Fig. 3.13	Different texture primitives detected by the LBP51
Fig. 3.14	SVM finds the optimal hyperplane that maximize the margin
	between all samples in training set53
Fig. 3.15	Red dot is a testing sample is tested with different values for
	k, such that '+' is a category and '-' is another category56
Fig. 3.16	Sample images of CVPR_09 dataset57
Fig. 3.17	Accuracy of BRISK, ORB, SIFT and SURF techniques
	with respect to changes in image contrast degradation
	percentage66
Fig. 3.18	Accuracy of FAST-BRIEF, FAST-BRISK, FAST-ORB and
	LBP techniques with respect to changes in image contrast
	degradation percentage66
Fig. 3.19	Accuracy of MSER-BRIEF, MSER-BRISK, MSER-ORB
	and HOG techniques with respect to changes in image
	contrast degradation percentage67
Fig. 3.20	Accuracy of BRISK, ORB, SIFT and SURF techniques
	with respect to changes in Gaussian blurring sigma68
Fig. 3.21	Accuracy of FAST-BRIEF, FAST-BRISK, FAST-ORB and
	LBP techniques with respect to changes in Gaussian blurring
	sigma68

Fig. 3.22	Accuracy of MSER-BRIEF, MSER-BRISK, MSER-ORB
	and HOG techniques with respect to changes in Gaussian
	blurring sigma69
Fig. 3.23	Accuracy of BRISK, ORB, SIFT and SURF techniques
	with respect to changes in noise ratio70
Fig. 3.24	Accuracy of FAST-BRIEF, FAST-BRISK, FAST-ORB and
	LBP techniques with respect to changes in noise ratio70
Fig. 3.25	Accuracy of MSER-BRIEF, MSER-BRISK, MSER-ORB
	and HOG techniques with respect to changes in noise
	ratio71
Fig. 4.1	General architecture for Convolutional Neural Network76
Fig. 4.2	GoogLeNet network with all layers78
Fig. 4.3	Inception module79
Fig. 4.4	PlacesCNN Architecture85
Fig. 4.5	Accuracy of all techniques with respect to changes in image
	contrast degradation percentage95
Fig. 4.6	Accuracy of all techniques with respect to changes in
	Gaussian blurring sigma97
Fig. 4.7	Accuracy of all techniques with respect to changes in noise
	ratio99
Fig. 4.8	Example of transformed images. For each image, we also
	show the output of the soft-max unit for the correct class.
	This output corresponds to the confidence the network has
	of the considered class. For all networks and for all
	transformations this confidence decreases as the image
	quality decreases101
Fig. 5.1	Sample RGB images (L.H.S) and Depth images (R.H.S) for
-	kitchen scene

Fig. 5.2	Sample RGB images (L.H.S) and Depth images (R.H.S) for
	bedroom scene
Fig. 5.3	Sample output of region growing algorithm with different
	values for T and elimination size108
Fig. 5.4	(a) Depth image, (b) Sobel edge magnitude, (c) Negative
	of (b) and (d) Result of connected component on
	image (c)
Fig. 5.5	Result of dilation followed by erosion with different SE
	size110
Fig. 5.6	Result of segmentation without dilation and erosion on
	the left and with on the right111
Fig. 5.7	(a) Erosion and dilation of Sobel edge magnitude, (b)
	Erosion of (a) by SE = 25, (c) Connected component of (b)
	with elimination of small objects112
Fig. 5.8	(a) Result from Figure 5.6, (b) Result from Figure 5.7, (c)
	Combining components of both (a) & (b), finally (d) is the
	result of merging components that is related to each other
	based on the spatial and depth criterion114
Fig. 5.9	(a) RGB image, (b) Result of RGB image segmentation
	115
Fig. 5.10	(a) RGB image, (b) Depth image, (c) Segmentation result of
	RGB image, (d) Segmentation result of Depth image and (e)
	is the result of combining both RGB and Depth image
	segmentation
Fig. 5.11	Illustration of the proposed RGB-D segmentation. Blocks in
	the same row are running on different threads as they are
	independent on each other. Blocks in same column are
	applied sequential118