Study of Lipoprotein Phospholipase A2 In Metabolic Syndrome

Thesis

Submitted by Partial Fulfillment of Master Degree in Endocrinology

By Hala Esmail Salem

M.B. B.Ch

Supervised by

Prof. Dr. Mohamed Hesham Elgayar

Professor of Internal Medicine & Endocrinology Faculty of Medicine-Ain Shams University

Dr. Manal Mohammad Abu-Shady

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine-Ain Shams University

Dr. Mona Mohammad Abdelsalam

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain shams University 2008

دراسة انزيم ليبوبروتين سفوليباز A2 المتلازمة الايضية

رساله

توطئه للحصول على درجة الماجستير في امراض الغدد الصماء

مقدمه من الطبيبة هاله اسماعيل سالم ريوس الطب و الجراحه

تحت اشراف

الاستاذ الدكتور/محمد هشام الجيار

استاذ الباطنه و الغدد الصماء كليه الطب جامعه عين شمس

/

مدرس الباطنه و الغدد الصماء كليه الطب جامعه عين شمس

مدرس الباطنه و الغدد الصماء كليه الطب جامعه عين شمس

كليه الطب- جامعه عين شمس 2008

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to PROF. DR/MOHAMED HESHAM ELGAYAR professor of internal medicine and endocrinology, Faculty of Medicine, Ain Shams University, for giving me the honor and great advantage of working under his supervision. His valuable teaching and continuing education to me extend far beyond the limits of this thesis.

I am also delighted to express my deepest gratitude and cordial thanks to **Dr. Manal Abou Shady**, Lecturer of internal medicine and endocrinology, Faculty of Medicine, Ain Shams University, for her kind care and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Mona M. Abdel Salam,** Lecturer of internal medicine and endocrinology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would also to thank Dr. Magdy Abbas Abdel Aziz fellow off Biochemistry AinShams University hospital in the laboratory of the endocrinology department for his cooperation in this work.

My deepest gratitude I extend to my whole family who offered me support, advice and motivation.

Hala Esmail 2008

List of Contents

Ti	itle	Page
•	List of Abbreviations	II
•	List of Tables	.VI
•	List of Figures	.IX
•	Introduction and Aim of the Work	1
•	Review of Literature:	
	o The Metabolic Syndrome	4
	o C-reactive protein	51
	o Lipoprotein Phospholipase A2	69
•	Subjects and Methods	82
•	Results	91
•	Discussion	122
•	Summary and Conclusion	130
•	References	133
•	Arabic Summary	

APO	Apolipoprotein
ABCA1	ATP binding cassette A1 transporter
ACE	Angiotensin converting enzyme
AGT	Angiotensinogen
ATP III	National Cholesterol Education Program Adult
	Treatment Panel III
BMI	Body-mass index
BP	Blood pressure
С	Complement
CARE	Cholesterol And Recurrent Events
CE	Cholesteryl ester
CETP	Cholesteryl Ester Transfer Protein
CHD	Coronary Heart Disease
CRP	C-reactive protein
CVD	Cardiovascular disease
DAG	Diacylglycerol
DECODE	Diabetes Epidemiology: Collaborative Analysis Of
	Diagnostic Criteria in Europe
FATP1	Fatty Acid Transport Protein 1
FFA	Free fatty acids
GLUT	Glucose transporter
HDL	High density lipoprotein cholesterol

HL	hepatic lipase
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme A
HOMA-IR	Homeostasis model assessment insulin resistance
HR	Hazard Ratio
IDF	International Diabetes Federation
IGF-1	Insulin growth like factor 1
IL-1	Interleukin-1
IL-6	Interleukin 6
IRS	Insulin receptor substrate
JNK1	Jun-amino terminal Kinase
LDL	Low density lipoprotein cholesterol
LPL	Lipoprotein lipase
Lp-PLA ₂	Lipoprotein-associated phospholipase A ₂
LRH-1	Liver receptor homolog-1
LRH-RE	LRH-1-responsive element
LysoPC	Lysophosphatidylcholine
MI	Myocardial infraction
ML	Milliliter
MS	Metabolic Syndrome
NASH	Non-alcoholic Steatohepatitis
NEFA	Non esterified fatty acid
NHANESIII	The third national health and nutrition examination
	survey

OSAS	Obstructive Sleep Apnea Syndrome
OxFA	Oxidized fatty acid
OxLDL	Oxidized low density lipoprotein
P	Phosphate
PAF-AH	Platelet-activating factor acetylhydrolase
PAI-1	Plasminogen activator inhibitor-1
PC 1	Prohormone Convertase 1
PCOS	Polycystic ovary syndrome
POMC	Pro-opiomelanocortine
PPAR	Peroxisome proliferators activated receptor
PPRE	peroxisome proliferator-activated receptor response
	element
SAA	Serum amyloid A
SAP	Serum amyloid P
Ser	Serine
SLE	Systemic lupus erythematosus
SMC	Smooth-muscle cell.
SNS	Sympathetic Nervous System
SOCS-3	Suppression of cytokine signaling-3
SR-BI	Scavenger receptor class B type I
STAT3	Signal Transducer and Activator of Transcription 3
TG	Triglyceride
TNF-	Tumor necrosis factor alpha

Tyr	Tyrosine
TZD	Thiazolidinediones
UCP	Uncoupling protein
VLDL	Very low density lipoproteins
WAT	White Adipose tissue

List of review figures

TITLE OF THE FIGURE	PAGE
TITLE OF THE FIGURE	NO.
Figure (1): Factors structures of metabolic syndrome.	6
Figure (2): NCEP ATP III guidelines.	7
Figure (3): Adipose tissue as an endocrine organ.	18
Figure (4): Relation of TNF and insulin resistance.	26
Figure (5): Pathophysiology of the metabolic syndrome.	32
Figure (6): Schematic representation of dyslipidemia of metabolic syndrome.	35
Figure (7): Pathways to insulin resistance and polycystic ovary syndrome.	47
Figure (8): Crystal structure of C-reactive protein complexed with phosphocholine.	54
Figure (9): Model of the interaction of CRP with C1q.	55
Figure (10): Schematic representation of Lp-PLA _{2.}	70
Figure (11): Lp-PLA ₂ reaction.	73
Figure (12): Putative proatherogenic properties of lipoprotein-associated phospholipase A ₂	74
Figure (13): Schematic representation of the proposed pro-atherogenic mechanism of Lp-PLA ₂ in the vessel wall.	79

List of results figures

	PAGE
TITLE OF THE FIGURE	NO.
	110.
Figure (1): Comparison between the studied groups as	97
regard age using T-test	
Figure (2): Comparison between the studied groups as	98
regard gender using Fisher's Exact Test	
Figure (3): Comparison between the studied groups as	99
regard history of medical importance using Fisher's	
Exact Test	
Figure (4): Comparison between the studied groups as	100
regard anthropometric measurement using T-test	
Figure (5): Comparison of Criteria of Metabolic	102
Syndrome as regard Gender	
Figure (6): Comparison between the studied groups as	103
regard to blood pressure using T-test	
Figure (7): Comparison between the studied groups as	104
regard Glycemic profile measurement using T-test	
Figure (8): Comparison between the studied groups as	105
regard Lipid profile measurement using T-test	
Figure (9): Comparison between the studied groups as	106
regard Lp-PLA2 using T-test	
Figure (10): Comparison in serum Lp-PLA2 as regard	107
females and males in group I	
Figure (11): Comparison in serum Lp-PLA2 as regard	108
smokers/non-smokers in group I	
Figure (12): Correlation between number of	109
component of metabolic syndrome and mean level of	
Lp-PLA2	
Figure (13): Correlation between serum Lp-PLA2 and	111
demographic/clinical and laboratory data in studied	
groups	

List of figures

Figure (14): ROC curve of Lp-PLA2	113
Figure (15): Comparison between the studied groups as	114
regard hsCRP using T-Test	
Figure (16): Comparison in serum hsCRP between	115
males and females in the studied groups	
Figure (17): Comparison in serum hsCRP between	116
Non-smoker and smoker in the studied groups	
Figure (18): Correlation between number of	117
component of metabolic syndrome and mean level of	
hsCRP	
Figure (19): Correlation between serum hsCRP and	119
demographic/clinical and laboratory data in studied	
groups	
Figure (20): ROC curve of hsCRP	121

List of review tables

	PAGE
TITLE OF THE TABLE	NO.
Table (1): Genes associated with the metabolic syndrome.	15
Table (2): Fasting abnormalities in lipid, lipoprotein, apolipoprotien values, and in enzymes or proteins involved in the metabolic syndrome.	33
Table (3): Metabolic abnormalities associated with the metabolic syndrome.	44
Table (4): The acute-phase reactant response and changes in plasma protein concentration	53
Table (5): Clinical disease and the C-reactive protein response	59
Table (6): Routine and possible future clinical uses of C-reactive protein measurement using high sensitivity assay	61

List of results tables

	PAGE
TITLE OF THE TABLE	NO.
Table (1): Comparison between the studied groups as regard age using T-test	97
Table (2): Comparison between the studied groups as regard gender using Fisher's Exact Test	98
Table (3): Comparison between the studied groups as regard history of medical importance using Fisher's Exact	99
Table (4): Comparison between the studied groups as regard anthropometric measurement using T-test	100
Table (5): Comparison of Criteria of Metabolic Syndrome as regard Gender	101
Table (6): Number of component of metabolic syndrome in the studied groups	102
Table (7): Comparison between the studied groups as regard to blood pressure using T-test	103
Table (8): Comparison between the studied groups as regard Glycemic profile measurement using T-test	104
Table (9): Comparison between the studied groups as regard Lipid profile measurement using T-test	105
Table (10): Comparison between the studied groups as regard Lp-PLA2 using T-test	106
Table (11): Comparison in serum Lp-PLA2 as regard females and males in group I	107
Table (12): Comparison in serum Lp-PLA2 as regard smokers/non-smokers in group I	108
Table (13): Correlation between number of component of metabolic syndrome and mean level of Lp-PLA2	109
Table (14): Correlation between serum Lp-PLA2 and demographic/clinical and laboratory data in studied groups	110

List of tables

Table (15): ROC curve of Lp-PLA2	113
Table (16): Comparison between the studied groups as regard hsCRP using T-Test	114
Table (17): Comparison in serum hsCRP between males and females in the studied groups	115
Table (18): Comparison in serum hsCRP between Non-smoker and smoker in the studied groups	116
Table (19): Correlation between number of component of metabolic syndrome and mean level of hsCRP	117
Table (20): Correlation between serum hsCRP and demographic/clinical and laboratory data in studied group	118
Table (21): ROC curve of hsCRP	121

Introduction

The metabolic syndrome is a clinical entity consisting of central obesity, dyslipidemia, elevated blood pressure, and hyperglycaemia, and its presence is associated with an increased risk for type II diabetes and cardiovascular disease (CVD). Insulin resistance, obesity, sedentary life, and genetics have all been implicated in its pathogenesis (Langefeld et al., 2004).

Aggressive management of the individual components of the syndrome should make it possible to prevent or delay the onset diabetes mellitus, hypertension, and cardiovascular disease. Weight loss improves all aspects mortality of the metabolic syndrome (National Institutes of Health 2004).

The significantly higher CRP concentration among men with the metabolic syndrome and its independence as a predictor of both CHD and diabetes risk suggests that CRP could be used in future revisions of the syndrome (**Grundy et al., 2006**).

Lipoprotein phospholipase A2 is a key enzyme involved in the release of arachidonic acid from the cell membrane. Inhibition of it by lipocortins results to a decrease in inflammation, and therefore controls levels of inflammatory mediators and cytotoxic metabolites (**Pinto et al., 2003**).

According to the latest IDF definition (2005), for a person to be defined as having the metabolic syndrome he must have:

Central obesity (waist circumference 94cm for Europid men and 80cm for Europid women, with ethnicity specific values for other groups)