

Ain Shams University Faculty of Education Physics Department

Effect of adding nano-sized particles on thermal, structural and mechanical properties of some Sn-Ag-Cu-based solder alloys

Thesis

Submitted for the Degree of Ph.D. Teacher's Preparation in Science (Physics)

By

Jacklein Anwar Fawzy Riad

Master of Teacher's Preparation in Science (Physics) 2013.

To

Physics Department Faculty of Education Ain Shams University

2018

Approval Sheet

Title: Effect of adding nano-sized particles on thermal. structural and mechanical properties of some Sn-Ag-Cu-based solder alloys

Candidate: Jacklein Anwar Fawzy Riad

: Doctor of philosophy Degree of Teacher's Preparation **Degree**

in Science (Physics)

Board of Advisors

Approved by

Signature

1. Prof. Dr. Adel Fawzy Ibrahim

Physics Department, Faculty of Education, Ain Shams University.

2. Prof. Dr. Sanaa Ahmed Favek Hassan

Solid State Department, National Center for Radiation Research and Technology.

3. Prof. Dr. Moustafa Ahmed Mahmoud

Physics Department, Faculty of Education, Ain Shams University.

4. Dr. Milad Sobhy Megallaa

Assistant Professor, Physics Department, Faculty of Education, Ain Shams University.

5. Dr. Essam Mohammed Nassr El Deen

Lecturer, Physics Department, Faculty of Education, Ain Shams University.

Date of presentation / / 2018

Post graduate studies:

Date of approval: / / Stamp: / /

Approval of Faculty Council: / / 2018 Approval of University Council: / / 2018

Ain Shams University Faculty of Education Physics Department

Title:

Effect of adding nano-sized particles on thermal, structural and mechanical properties of some Sn-Ag-Cu-based solder alloys

Researcher Name: Jacklein Anwar Fawzy Riad

Submitted to:

Physics Department, Faculty of Education, Ain Shams University

Supervised by:

- 1- Prof. Dr. Adel Fawzy Ibrahim
- 2- Prof. Dr. Sanaa Ahmed Fayek Hassan
- 3- Prof. Dr. Moustafa Ahmed Mahmoud
- 4- Dr. Milad Sobhy Megallaa
- 5- Dr. Essam Mohammed Nassr El Deen

Acknowledgement

Acknowledgement

I wish to express my deep gratitude to *Prof. Dr. Adel Fawzy Ibrahim*, physics department, faculty of education, Ain Shams university for his valuable help, useful discussions and suggestions, continuous encouragement and supervision throughout this work.

I also wish to express my deep gratitude to *Prof. Dr. Sanna Ahmed Fayek*, solid state department, national center for radiation research and technology, Naser city, Cairo, Egypt for her assistance and continuous supervision and encouragement.

I would like to express my thanks to *Prof. Dr. Moustafa Ahmed Mahmoud*, physics department, faculty of education, Ain Shams university, for his help and valuable discussions through the present work.

I wish to express my sincere appreciation for *Asst. Prof. Dr. Milad Sobhy Megallaa*, physics department, faculty of education, Ain Shams university for his supervision and advice during the course of this work.

Thanks are also extended to *Dr. Essam Mohammed Nassr*, physics department, faculty of education, Ain Shams university, for his help, support and his persistent interest.

I wish to express my deep gratitude to *Prof. Dr. Gamal Saad Awadalla*, physics department, faculty of education, Ain Shams university for his assistance and encouragement during this work.

Finally, thanks are also extended to all members and colleagues in the laboratory of "Solid State Physics" faculty of education, Ain Shams university.

I would like to express my deep thanks to my family members for their encouragement and support throughout the work.

Special heartfelt thanks to my husband, *Milad Naeem*, for his love, prayers, understanding and continuing support to complete this work. I want to say to him: "I love you".

Contents

	Contents	Page
	List of figures	a
	List of tables	j
	List of equations	k
	Abstract	1
	Summary	m
	Published paper	p
	CHAPTER 1	
	Introduction and Literature Review	
1-1	Deformation fundamentals	1
	Point defects	1
	Line defects (dislocations)	1
	Surface/planar defects	2
	Volume defects	3
1-2	Elastic properties of dislocations	3
1-3	Dislocation motion	4
1-4	Dislocation interactions	5
1-5	Multiplication of dislocations	5
1-6	Work-hardening of metals and alloys	6
1-7	Mechanisms of work-hardening	7
	Strain-hardening	7
	Matrix strengthening	7
	Grain boundary hardening	8
	Grain size effect	8
	Precipitation or dispersion strengthening	9
1-8	Soldering alloys	10

		page
1-9	Sn-Ag-Cu (SAC) phase diagram	12
1-10	Sn - Ag - Cu solder alloy	13
1-11	Applications of Sn-Ag-Cu solder alloy	15
1-12	Composite solder alloys	17
1-13	Graphene Oxide Nano Sheets (GONSs)	17
1-14	Mechanical properties of metals and alloys	20
	Stress-strain characteristics	20
	Factors affecting the stress-strain curve	25
	Creep characteristics	27
	Factors affecting the creep curve	30
	Mechanisms of creep	34
1-15	Literature review	37
	Sn-Ag-Cu solder alloys	37
	Sn-Ag-Cu solder alloys with nanoparticles	
	additions (composite solders)	47
	Addition of Graphene Nano-Sheets	51
1-16	Scope and Outline of the Present Work	54
	CHAPTER 2	
	Experimental Techniques and Devices	
2-1	Samples preparation	55
2-2	Heat treatments	56
2-3	The components of the mechanical system	56
	Tensile-testing machine	56
	Measurement technique (tensile test)	60
2-4	X-ray diffraction (XRD)	64
2-5	Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS)	
	techniques	64

		Page	
2-6	Differential scanning calorimeter (DSC)	67	
	technique	07	
	CHAPTER 3		
Results and Discussions			
3-1	Microstructure evolutions and thermal analysis		
	of SAC105, SAC105-1wt%Zn and SAC105-		
	1wt%Zn-0.2wt%GONSs solder alloys	69	
3-1-1	Microstructure analysis	69	
3-1-2	Melting characteristics	74	
3-1-3	Role of Zn element in the mechanical response		
	of the SAC105 solder alloy	78	
3-1-4	Effect of GONSs on the microstructure and		
	mechanical response of the SAC105 solder		
	alloy	79	
3-2	Tensile stress-strain characteristics of plain		
	SAC105, SAC105-Zn containing and SAC105-		
	Zn composite solder alloys	82	
3-2-1	Effect of strain rate and testing temperature on		
	the stress-strain characteristics of the three		
	solder alloys	82	
3-2-2	Effect of structure on the stress-strain		
	characteristics	83	
3-2-3	r		
	stress-strain parameters	83	
3-2-4	Influence of structure on the stress-strain		
	parameters	91	
3-2-5	Stress exponent	99	
3-2-6	The work-hardening coefficient, χ_p	101	

		Page
3-2-7	The activation energy of the deformation	
	process	104
3-3	Relaxation in plain SAC105, SAC105-Zn	
	containing and SAC105-Zn-GONSs composite	
	solder alloys	106
3-3-1	Stress relaxation rate.	107
3-3-2	Critical relaxed stress.	113
3-3-3	Activation energy	116
3-4	Tensile creep characteristics of SAC105 plain,	
	SAC105-Zn containing and SAC105-Zn-	
	GONSs composite solder alloys	118
3-4-1	Steady state creep	126
3-4-2	Stress dependence of rupture time	133
3-4-3	Energy activating creep process	139
	Conclusions	142
	References	144
	Arabic summary	

List of figures

List of figures

	2
	3
Figure 2: Phase diagram of SnAgCu (SAC) alloy	
Figure 3: The market share of different Pb-free solders	5
Figure 4: Graphene is an atomic-scale honeycomb lattice made of carbon atoms	9
Figure 5: A typical stress-strain curve	1
Figure 6: Tensile stress-strain curves for metals 2	3
Figure 7: Creep curve under constant stress and temperature	8
Figure 8: Effect of stress and temperature on strain-time creep curves	1
Figure 9: Creep deformation map 3	5
Figure 10: Schematic diagram of the mechanical system	8
Figure 11: The force sensor	9
Figure 12: The rotary motion sensor	9
Figure 13: The science workshop 500 interface 5	9
Figure 14: Stress-strain relationship as obtained by the data studio graph	1

Figure	Caption	Page
Figure 15:	Creep curve as obtained by the data studio graph	63
Figure 16:	Schematic representation of a stress-relaxation curve as obtained by the data studio graph	63
Figure 17:	Philips X' Pert multipurpose diffraction diffractometer	65
Figure 18:	JEOL, JSM-5400 scanning electron microscope.	66
Figure 19:	The typical DSC traces	67
Figure 20:	(a) XRD pattern for GONSs, (b) bright field transmission electron microscope for GONSs and (c) bright field transmission electron microscope of magnified part of GONSs	69
Figure 21:	XRD pattern for (a) SAC105 and (b) SAC105-Zn solder alloys, and (c) SAC105-Zn-GONSs composite solder	71
Figure 22:	Optical micrographs showing the IMCs and β-Sn in (a) SAC105 and (b) SAC105-Zn solder alloys, and (c) SAC105-Zn-GONSs composite solder	72
Figure 23:	EDS for (a) SAC105 and (b) SAC105-Zn-GONSs solders.	73

Figure	Caption	Page
Figure 24:	SEM micrographs showing the IMCs for (a) SAC105, (b) magnified part from (a) and the corresponding EDS curves	75
Figure 25:	DSC curves of: (a) SAC105 plain, (b) SAC105–Zn and (c) SAC105–Zn-GONSs composite solder	76
Figure 26:	Stress-strain curves for SAC105, SAC105-Zn and SAC105-Zn-GONSs samples aged at 400 K for 30 minutes and tested at different strain rates and different testing temperatures as indicated.	84
Figure 27:	Stress-strain curves for SAC105, SAC105–Zn and SAC105–Zn-GONSs solder alloys tested at different strain rates and testing temperatures as indicated.	85
Figure 28:	Testing temperature (T_t) dependence of (a) Young's modulus Y and (b) yield stress σ_y for SAC105 plain, SAC105–Zn containing and (c) SAC105-Zn composite samples at different strain rates.	88