

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BI.EXI

STUDIES ON THE COMPLEMENTARY EFFECT OF THE RESIDEANCE GENES TO LEAF RUST OF WHEAT

by

Sabry Ibrahim Mansour Shahin

B.Sc. (Plant Pathology), 1993
Faculty of Agriculture, Cairo University

Thesis

Submitted in Partial Fulfilment for the Requirements for the Degree of MASTER

In

Plant Pathology

Agricultural Botany Department
Faculty of Agriculture
Minufiya University

SUPERVISION COMMITTEE

Thesis supervised By:

DR. MOHAMED NAZIM SAYED AHMED

Professor of Plant Pathology and Head of Agricultural Botany

Department

Faculty of Agriculture

Minufiya University, Shibin El-Kom.

DR. MAHMOUD EMAM NASR

Leezz

Professor of Genetics

Dean of Genetic Engineering and Biotechnology Institute

Minufiya University, El-Sadat City

DR. SALAH EL-DIN SHERIF OMAR

Research Professor.

Cereal Diseases Research Department,

Plant Pathology Research Institute.

Agricultural Research Center, Giza.

Cismile yup

APPROVAL SHEET

Major Fiel	d: Plant Pathology
Degree	: M.Sc.
Title	: STUDIES ON THE COMPLEMENTARY EFFECT
	OF THE RESISTANCE GENES TO LEAF RUST
	OF WHEAT
Ву	: Sabry Ibrahim Mansour Shahin
·	
Approved by	:
	Prof. Dr.: Jag
	Prof. Dr. : M. J. Nus
	Prof. Dr.:
	Prof. Dr.:

Date: / /1998

(Committee in Charge)

ACKNOWLEDGEMENT

The author would like to express his sincere appreciation and deepest gratitude to *Prof. Dr. M. Nazim*, Professor of plant pathology and Head of Agricultural Botany Department, Faculty of Agriculture, Minufiya University for suggesting the problem, supervision, valuable advice and help throughout the course of the study.

Deepest gratitude and sincere appreciation to *Prof. Dr. M. Nasr*, Professor of Genetics, and Dean of Genetic Engineering and Biotechnology Research Institute, El-Sadat City, Minufiya University, for his supervision and help throughout the course of this investigation.

Thanks are due to *Prof. Dr. S. Sherif*, Professor of Plant Pathology, Cereal Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, for his supervision, providing the facilities and valuable advice.

Thanks are also extended to all members of the Agricultural Botany Department, Minufiya University and the members of Cereal Diseases Research Department, Plant Pathology Research Institute for their cooperation, help and facilities provided.

Thanks are also due to all members of the Wheat Research Department, Sakha Agricultural Research Station for Providing Facilities and Sincere Cooperation.

CONTENTS

•	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
A. Virulence survey	3
B. Identification of resistance genes for leaf rust	7
C. Resistance genes interactions	12
3- MATERIALS AND METHODS	16
Rust sample collections	16
Sample preservation	16
Isolation and inoculation	16
Disease assessment	19
a. At seedling stage	19
b. At adult stage	20
Resistance genes interactions	20
Field procedures	22
Inoculation	25
1- Seedling test	25
2- Adult test	26
Statistical and genetic analysis	27
Colony size and pustule size	27
4- RESULTS	30
Virulence survey and evaluation the resistance genes	30
A. The first season (1993/1994)	30
B. The second season (1994/1995)	34
C. The third season (1995/1996)	37
D. The fourth season (1996/1997)	40
Rust reaction under field conditions	46
a. monogenic lines	46
1- 1995 growing season	46
2- 1996 growing season	46
3- 1997 growing season	47
b. local varieties	47
1- 1995 growing season	47
2- 1996 growing season	47 47
3- 1997 growing season	47
Response of seven parents of wheat leaf rust	
monognic lines to races 57 and 77 of wheat leaf rust	50
at seedling stage under greenhouse conditions	50
Response of six commercial wheat parents to races 57	1
and 77 of wheat leaf rust at seedling stage under	E A
greenhouse conditions	54

· · · · · · · · · · · · · · · · · · ·
Response of seven parents and their F1 crosses of wheat leaf rust monognic lines to races 57 and 77 of wheat leaf rust at seedling stage under greenhouse
conditions
Response of six commercial wheat parents and their F1 crosses to races 57 and 77 of wheat leaf rust at
seedling stage under greenhouse conditions
Response of six commercial wheat parents and their
F1 crosses to races 57 and 77 in the adult stage
under greenhouse conditions
Response of wheat leaf rust infection on six
commercial wheat parents and their F1 crosses in the
adult stage under field conditions
Wheat leaf rust resistance genes interactions
A. seedling tests
A.1. The leaf rust reaction at seedling stage
against puccinia recondita f.sp tritici to
race 57
A.2. The leaf rust reaction at seedling stage
against puccinia recondita f.sp tritici to
race 77
B. Field tests
5- DISCUSSION
6- SUMMARY
7- REFERENCES
8- ARABIC SLIMMARY

....

INTRODUCTION

Wheat is the most important cereal crops in Egypt. In 1997 / 98 the annual cultivated area reached about 2.421 million feddans producing a total of 6.1* million tons of grains.

In Egypt, wheat is liable to be attacked by stem leaf and stripe rusts. Wheat leaf rust is caused by Puccinia recondita Rob. ex. Desm. f.sp. tritici Eriks. It is widespread on most varieties of wheat grown in Egypt until 1980's. It caused severe losses in grain yield that reached 23 % on some varieties (Nazim et al; 1983). Moreover, this disease cause a eliminating of many varieties because of their susceptibility to the prevailing virulences. The failure of such varieties was mainly due to the appearance of new virulences which were able to attack them. Therefore, one of the most important and essential studies were to survey and study the distribution frequency of the virulence gene(s) in leaf rust populations. Such information is very useful in planning successful breeding program for leaf rust resistance in Egypt.

Disease resistance is controlled by major or minor genes or both together, however, complementary effect between major genes may enhance the response of a variety; genes at different loci or their products may interact to give higher levels of resistance (Simons et al., 1978). This effect requires the presence of two or more genes, reacting for the resistance, to be expressed.

^{*} Statistical report, ministry of Agriculture, 1998.

Complementary gene action as an interaction between the products of two or more genes. Therefore; resistance might be more stable than that caused by a single gene (monogenic resistance). Complementary gene action is commonly used to describe the interdependence of two or more genes, all of which are essential for the ultimate expression of a character (Hooker, 1967).

For planning a successful breeding programme to provide more durable resistance, the complementary effect among the leaf rust resistance genes was studied. The crosses among leaf rust monogenic lines and the commercial varieties were carried out.

REVIEW OF LITERATURE

A. Virulence survey

The causal organism of wheat leaf rust is known to be of dynamic state and consists of different physiologic forms.

Mains and Jakson (1926) early described distinct physiologic races of leaf rust using two wheat varieties i.e. Malakof and Kanred. They found 12 physiologic races using a differential series of 11 varieties wheat.

Johnston and Mains (1932) identified 26 physiologic races besides the previously identified races using a differential set of 8 varieties i.e. Malakof, Webster, Carina, Brevit, Loros, Mediterranean, Hussar and Democrat.

Furthermore, many physiologic races were identified in different parts of the world. Also, the basis of races identification and the differential set were revised several times. The differential varieties that were evaluated as standard differentials in 1932 by Johnston and Mains were revised and accepted as international differential set for physiologic races of wheat leaf rust.

Johnston (1961) recorded 183 races of wheat leaf rust using the standard differential varieties.

Abdel-Hak (1962) and Abdel-Hak and Dessouki (1963) identified the races 184, 186 and 187 from rusted samples collected from Egypt.

Because of some difficults of race identification under controlled temperature in the greenhouse, **Johnston** (1956) and **Basile** (1957) suggested 27 unified groups using 5 wheat varieties of the standard differential set (cvs. Malakof, Webster, Loros, Mediterranean and Democrat) and droped the cvs. Carina, Brevit and Hussar because of their thermal sensitivety.

Designation of leaf rust resistance genes (Lr's) was started by Ausemus et al. (1946) through the identification of gene Lr 1 in Malakof. The genetic make up or the standard differential varieties were then studied.

Samborski and Dyck (1968) used the avirulence / virulence formulae to describe physiologic specialization in Canada using the standard differential varieties.

Dyck and Samborski (1968) studied the inheritance of leaf rust in seedling stage in the common wheat varieties to races 15 and 161. They isolated resistance genes and incorporated or transferred them to "Thatcher" background.

Although **Dyck and Samborski** (1974) reported the theory of two allelic genes i.e. Lr 2a and Lr 2c which can be used in two separate breeding programs. These genes can not be used in companion breeding program since isolates virulent on Lr 2a would also be virulent on Lr 2c.

Since that time the near isogenic lines carrying monogenic lines for leaf rust resistance were used as differentials for race identification in 1968 and 1985 in Canada and USA, respectively.