

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Kinematic and Electromyographic Analysis of Reaching Pattern in Stroke Patients

By Bassam Abd El-Mageed Mohammad Refaat

B. Sc in physical therapy, Department of Physical Therapy for Neuromuscular and Neurosurgical Disorders

Thesis

Submitted for Partial Fulfillment of the Requirements of Master Degree in Physical Therapy

Faculty of Physical Therapy Cairo University

2006

بسم الله الرحمن الرحيم

صدق الله العظيم

سورةالإسراء

آية: (٨٥)

Supervisors

Prof. Dr. Nawal Abd El-Raouf Abou Shady

Professor of Physical Therapy for Neuromuscular and Neurosurgical Disorders, Faculty of Physical Therapy,

Cairo University

Prof. Dr. Maha Atif Zaki

Assistant Professor of Neurology, Faculty of Medicine, Cairo University

Dr. Abeer Abo Bakr Elwishy

Lecturer of Physical Therapy for Neuromuscular and Neurosurgical Disorders, Faculty of Physical Therapy,

Cairo University

Acknowledgment

First and foremost, thanks to ALLAH, the most compassionate, the most merciful.

I wish to express special gratitude to *Prof. Dr. NAWAL ABOU* SHADY, Professor of Physical Therapy, Faculty of Physical Therapy, Cairo University, advisor and director of this thesis for her continuous guidance, support and patience that she willingly extended throughout all of this work.

Special appreciation is extended to *Prof. Dr. MAHA ATIF*, Assistant Professor of Neurology, Faculty of Medicine, Cairo University, for her generous help and for devoting much of her precious time and attention to me throughout this study.

No expression could ever reveal my deep appreciation and thanks to **Dr. ABEER ABO BAKR**, Lecturer of Physical Therapy, Faculty of Physical Therapy, Cairo University, for her valuable efforts, continuous help and encouragement during this study.

Special appreciation to *Dr. AMIRA EL-GOHARY*, Lecturer of Neurophysiology, Faculty of Medicine, Cairo University, for her careful reading & valuable instructions during reviewing this study.

I am very grateful to *Dr. NERMIN ADEL*, Lecturer of Neurology, Faculty of Medicine, Cairo University, for her characteristic reviewing, valuable consultations and close help.

I wish also to express my special thanks to *Dr. WALEED TALAT*, and *Dr. ENAS EL-SAYD* Lecturers of Physical Therapy, Faculty of Physical Therapy, Cairo University, for their precious advices during reviewing this work.

Special thanks to all members of the physical therapy department of Biomechanics, Faculty of Physical Therapy, Cairo University, for their great help to understand the practical points in the motion analysis lab., and allowed me to finish the clinical part of this study.

Thanks to all members in the department of physical therapy for Neurological& Neurosurgical Disorders, Faculty of Physical Therapy, and to many persons who helped me in several ways to finish this work.

Last but certainly not least, I am very thankful to my patients and their relatives for their active participation in this work.

Bassam Abd. El-Mageed Mohammad Refaat (2006)

DEDICATION

To my parents, who gave me everything. To the soul of my mother who sacrificed her life to help and support me. To my brother and sister who encouraged and supported me.

Kinematic and Electromyographic Analysis of Reaching Pattern in Stroke Patients/ Bassam Abd El-Mageed Mohammad Refaat; Supervisors: Prof. Dr.Nawal Abd El-Raouf Abou Shady-Faculty of Physical Therapy, Prof. Dr.Maha Atif Zaki- Faculty of Medicine, Dr.Abeer Abo Bakr Elwishy-Faculty of Physical Therapy, Cairo University, 2006, 162 pages in various leaves.

ABSTRACT

Background: A major prerequisite for successful rehabilitation therapy after stroke is the understanding of the mechanisms underlying motor deficits common to these patients. Objectives: Objectives of this study were to determine the influence of altered muscle activity amplitudes on active ROM and the level of motor impairment of reaching pattern. Methods: thirty stroke patients participated in the study. Their mean age was 48.5± 5.27. Analysis was conducted from sitting on a chair. The patients were instructed to reach for a target placed within their arm's length in forward horizontal plane by the affected then the non affected arm. Shoulder flexion, elbow extension and wrist extension ROM were analyzed by using three-dimensional motion analysis system. Muscular EMG amplitudes were recorded from the clavicular head of pectoralis major, anterior deltoid, lateral head of triceps and radial wrist extensors. The level of motor impairment was measured by the reaching performance scale. Results: There was a significant decrease in EMG amplitudes of the selected muscles and in ROM of shoulder flexion, elbow and wrist extension in the affected arm than the non-affected which intern affect the motor performance of reaching pattern in the affected arm of stroke patients. Conclusion: Reduction of EMG activity amplitudes of the selected muscles was considered as an important cause of limited ROM and increased level of motor impairment of reaching pattern in stroke population.

Key words: Stroke, EMG, 3-D Motion Analysis, Reaching Pattern.

CONTENTS

Chapter		Page
I	Introduction	1
	-Statement of the problem	3
	-Purpose of the study	3
	-Significance of the study	3
	-Hypothesis	4
	-Delimitations	4
	–Limitations	5
	-Basic assumption	5
	-Definition of terms	6
II	Literature Review	8
	-Stroke	8
	-Normal reaching movement	10
	1-Visual regard	11
	2-Reaching	13
	-Functional anatomy of reaching	16
	-Kinematic description of normal reaching	23
	-Dysfunction of upper extremity after stroke	27
	-Reaching Performance Scale	31
	-Dynamic electromyography	34
	•Abnormal EMG of reaching after stroke	38
	-Upper extremity motion analysis	42
	•Alterations in reaching kinematics after stroke	45
III	Materials and Methods	50
	-Design of the study	50
	-Exclusion criteria	50

Chapter		Page
-	-Procedure	51
	-Instrumentations	53
	A-EMG system	53
	•EMG system preparation	55
	B-Motion Analysis system (Camera system)	58
	•Upper limb motion analysis procedure	61
	•Data Processing	67
	•Data Analysis	68
IV	Results	69
\mathbf{V}	Discussion	90
VI	Summary, Conclusion & Recommendations	101
	Summary	101
	Conclusions	102
	Recommendations	103
	References	104
	Appendices	120
	Arabic Summary	

LIST OF ABBREVIATIONS

3D : Three Dimensional

ABS : Absolute

ADL : Activities of daily Living

AMAT : Arm Motor Ability Test

Ant : Anterior

Cm : Centimeter

CNS : Central Nervous System

CVA : Cerebrovascular Accident

Deg : Degrees

DF : Degrees of Freedom

EMG : Electromyography

E.g : Example

Fig. : Figure

FMA : Fugel-Meyer Assessment

GHJ: Glenohumeral Joint

GS: Global Synkinesis

KEMG : Kinesiological Electromyography

Lt. : Left

Max : Maximum

MCU : Motion Capture Unit

Min : Minimum

msec : Milli second

mv : Milli volts

No. : Number

PC : Personal Computer

RMS : Root Mean Square

ROM : Range of Motion