PREDICTION OF MENISCUS TEARS: COMPARING PHYSICAL EXAMINATION, MRI AND ARTHROSCOPY

Thesis

Submitted for fulfillment Of Master degree in orthopedic surgery

By

Wael Saad El-deen Mohamed Khalel M.B., B.Ch. Cairo University

Under supervision of

Prof.\ ALY M.E.El-Zawahry

Professor of Orthopedic Surgery Cairo University

Prof.\ Yasser Abd El-Fattah

Assistant professor of Orthopedic Surgery Cairo University

> Faculty of medicine Cairo University 2014

بسم الله الرحمن الرحيم

وقل اعملوا فسيري الله عملكم و رسوله والمؤمنون وستردون الي عالم الغيب والشهادة فينبئكم بما كنتم تعملون

DEDICATION TO MY PARENTS, MY WIFE AND MY DAUGHTERS HABEBA AND SALMA

Acknowledgement

First, thank **GOD** who gave me the power to complete this work.

It is a pleasure to express my great appreciation to Prof. Dr. **Aly M.E.El-zawahry**, professor of orthopedic surgery, Faculty of Medicine, Cairo University, for his expert guidance, kind supervision, and valuable suggestion and advice offered to me throughout this work.

I'm deeply greatful to Dr. **Yasser Abd El-Fattah**, assistant professor of orthopedic surgery, Faculty of Medicine, Cairo University, for his accurate supervision, kind cooperation, continuous support, and honest guidance and experience to facilitate the production of this work.

CONTENTS

Chapter	page
Introduction	1
1. Anatomy	2
2. Biomechanics and function	32
3. Pathology	44
4. Diagnosis	52
5. Patient and methods	89
6. Statstical analysis and results	
7. Discussion	103
8. Summary and conclusion	107
9. Case presentation	109
10. References	117
11. Arabic summary	\

List of Figures

Figure	page
Fig.1-1): Osseous structures of the knee.	3
Fig.1-2): The menisci in their figure of eight pattern upon the tibial.	3
Fig.1-3): Muscles of the extensor mechanism.	3
Fig.1-4): Other structures of the extensor mechanism.	5
Fig.1-5): Medial structures of the knee.	6
Fig.1-6): The menisci and their capsular ligaments attachments.	7
Fig.1-7): Tibial plateau and relative capsular ligaments attachments to the menisci.	7
Fig.1-8): Lateral structures of the knee.	9
Fig.1-9): Posterior structures of the knee.	10
Fig.1-10): Posterior view of the knee and meniscofemoral ligaments.	10
Fig.1-11): Gross morphology of the tibial plateau.	12
Fig.1-12): Insertion sites of the horns of the menisci on tibial plateau.	14
Fig.1-13): The histologic appearance of the human menisci.	16
Fig.1-14): Schematic of the collagen bundles and their orientation within the menisc	i. 16
Fig.1-15): Blood supply of the menisci.	19
Fig.1-16): Varies zones of the meniscus based on their blood supply.	19
Fig.1-17): Nerve supply of the meniscus.	20
Fig.1-18): Arthroscopic compartments of the left knee.	22
Fig. 1-19): Medial plica.	22

Fig. 1-20): Normal medial meniscus.	23
Fig. 1-21): Medial femoral condyle.	24
Fig. 1-22): Anterior cruciate ligament.	25
Fig. 1-23): Lateral meniscus.	26
Fig. 1-24): Lateral femoral condyle.	27
Fig. 1-25): Popliteus tendon.	27
Fig. 1-26): Portal placement of knee arthroscopy.	28
Fig. 1-27): Anterior knee anatomy and portal placement.	31
Fig.2-1): Screw home mechanism of the knee.	32
Fig.2-2): Contact surface with the menisci.	36
Fig.2-3): Hoop mechanism of the meniscus and its disruption.	37
Fig.2-4): Frontal section of the medial compartment of the knee.	39
Fig.2-5): Degenerative changes following meniscectomy.	40
Fig.3-1): Shape classification of the meniscal tears.	47
Fig.3-2): Meniscocapsular separation in M.R.I.	51
Fig.4-1): McMurray test.	59
Fig.4-2): Apley test.	60
Fig.4-3): Thessaly test.	61
Fig.4-4):Steinmann test.	62
Fig.4-5): Saggital M.R.I in normal medial and lateral compartment of the knee.	68
Fig.4-6): Meniscal tear features in saggital and coronal M.R.I knee.	68
Fig.4-7): Bucket handle tear in coronal and saggital M.R.I.	70

Fig.4-8): Transverse meniscal ligament in M.R.I.	71
Fig.4-9): Popliteal hiatus in saggital M.R.I knee.	71
Fig.4-10): M.R.I arthrography and its role of diagnosing meniscal tear.	73
Fig.4-11): Knee arthroscopy.	75
Fig. 4-12): Patient position in knee arthroscopy.	78
Fig. 4-13): Leg holder.	79
Fig. 4-14): Surface anatomy of the knee joint.	82
Fig. 4-15): Spinal needle in the knee joint.	83
Fig. 4-16): Arthroscopic view of suprapatellar pouch.	85
Fig. 4-17): Arthroscopic view of medial compartment.	86
Fig. 4-18): Arthroscopic view of intercondylar noth.	87
Fig. 4-19): Arthroscopic view of lateral compartment.	88
Fig.5-1): Demography of gender.	89
Fig.5-2): Demography of age.	90
Fig.5-3): Demography of type of trauma.	90
Fig.5-4): Demography of right- versus- left knee.	91
Fig.5-5): Arthroscopy of lateral gutter.	94
Fig.5-6): Tear of medial meniscus.	94
Fig.5-7): Arthroscopic punch.	95
Fig.9-1): MRI of knee joint show torn PHMM.	110
Fig.9-2): MRI of knee joint show partially torn ACL.	110
Fig.9-3): MRI of knee joint show torn PHMM.	112

Fig.9-4): Arthroscopy of knee joint show torn medial meniscus.	112
Fig.9-5): Partial meniscectomy.	113
Fig.9-6): MRI of knee joint show torn PHMM.	115
Fig.9-7): Torn ACL.	115
Fig.9-8): Probing of medial meniscus.	116

Abbreviations

MRI: Magnetic Resonance Imaging

MFL: Meniscofemoral Ligament

PCL: Posterior Cruciate Ligament

ACL: Anterior Cruciate Ligament

ROM: Range of Motion

MCL: Medial Collateral Ligament

DJD: Degenerative Joint Disease

MM: Medial Meniscus

L M: Lateral Meniscus

PHMM: Posterior Horn Medial Meniscus

BMI: Body Mass Index

MCS: Menisco-capsular Separation

List of tables

Table number	Page
1. Table 1: Percentage incidence of symptoms	55
2. Table 2: Percentage incidence of signs	57
3. Table 3: Reliability of clinical diagnosis of medial and lateral	
meniscal injuries	64
Crosstable number	
1. Crosstable 1): Joint line tenderness test results	97
2. Crosstable 2): McMurry's test results	98
3. Crosstable 3): Apley's test results	99
4. Crosstable 4): Thessaly test results	100
5. Crosstable 5): MRI results comparing to arthroscopy	10
6. Crosstable 6): The end results	102
7. Crosstable 7): The end results	102

Abstract

summary

The aims of our study is to correlate the specific clinical tests (joint line tenderness test, Apley's test, McMurray's test and Thessaly test) with the MRI and arthroscopic findings.

The patients in this study are carefully selected from a certain age group 20-35 years and with recent trauma.

Risk factors for poor results include previous meniscectomies , previous knees ligament repair , previous reconstruction , previous arthroscopy , case with fracture , case with chronic debilitating diseases and case with deformity in knee .

All patients are subjected to physical examination, MRI then arthroscopy as a gold standard.

The results are collected and tabulated on SPSS spreadsheet and studied for correlation. The sensitivity, specificity and diagnostic accuracy of clinical tests and MRI were be evaluated.

The results are compared and reviewed with results of other literatures.

Conclusions:

Joint line tenderness, McMurray's, Apley's and Thessaly test are independent clinical diagnostic factors for the diagnosis of meniscal tears.

MRI has higher accuracy, sensitivity and NPV for the diagnosis of meniscal tears than Joint line tenderness, McMurray's test, Apley's and Thessaly test.

The combination of Joint line tenderness, McMurray's test, Apley's and Thessaly test and MRI for confirmation is typical for a meniscal lesion diagnosis.

Recommendations:

Based on these findings, MRI should be used as a standard diagnostic tool to predict meniscal tears before arthroscopy and should be used as the primary diagnostic tool for selection of candidates for arthroscopy.

Keywords:

locking; McMurray's test; magnetic resonance imaging (MRI); meniscus tear; arthroscopy.

CONTENTS

Chapter	Page
Introduction	1
1. Anatomy	2
2. Biomechanics and function	22
3. Pathology	31
4. Diagnosis	37
5. Material and Methods	63
6. Statstical analysis and Results	70
7. Discussion77	
8. Summary and conclusion	81
9. Case presentation	83
10. References	91
11. Arabic Summary	١

Introduction

Meniscal tears are the most common injury of the knee, with a reported annual incidence of meniscal injury resulting in meniscectomy of 61 per 100,000 populations [1]. It is important to make an accurate preliminary diagnosis of meniscus tears so that the appropriate treatment can be given. A detailed history and physical examination can help differentiate patients who have a meniscus tear from those whose knee pain arises from other conditions [2]. MRI is the best commonly used diagnostic imaging technique on patients with meniscus tears of the knee because of its accuracy to diagnose mensical tears [3]. MRI is commonly used because various intra-articular lesions historically have had common symptoms, patient history alone is inadequate as a diagnostic tool, and the diagnostic accuracy of clinical tests for mensical tears has often been questioned. A review of the available literature reveals conflicting results as to their usefulness [4]. If the patient had no clinical symptoms, even though MRI showed meniscal tears of patient, knee arthroscopy was unnecessary. In a high percentage of cases, reling on MRI alone without using clinical judgment may have led to inappropriate treatment. In any case, MRI did not prevent "unnecessary sugery" [5].

The aims of this study is to correlate the specific clinical test (joint line tenderness test, McMurray's test, Apley's test and Thessaly test) with MRI and arthroscopic finding.