# The Use of Modified Dunn Procedure in the Treatment of Adolescent Slipped Capital Femoral Epiphysis

Thesis submitted for partial fulfillment of the MD degree in Orthopaedics

By

### **Fady Kamal Beder**

MB.Bch, M.Sc. (Orthopaedics)

### Supervised By

### PROF. DR. Mohammed Hani Mohamadi

Professor of Orthopaedics, Cairo University

### PROF. DR. Hisham Abdel Ghani

Professor of Orthopaedics, Cairo University

### DR. Mahmoud Abdel Karim

Lecturer of Orthopaedics, Cairo University

### DR. Ahmed Hazem Abdel Azeem

Lecturer of Orthopaedics, Cairo University

# استعمال طريقة دن المعدلة في علاج انزلاق الحرقوف العلوى لعظمة الفخذ

رسالة توطئة لاستكمال درجة الدكتوراه في جراحة العظام مقدمة من

الطبيب / فادى كمال عبدالدايم بدير تحت اشر اف

# ا.د / محمد هانی محمدی

أستاذ جراحة العظام كلية الطب حامعة القاهرة

# اد/ هشام عبدالغني

أستاذ جراحة العظام كلية الطب حامعة القاهرة

# ا.د/ محمود عبدالكريم

مدرس جراحة العظام كلية الطب حامعة القاهرة

# ا.د/ احمد حازم

مدرس جراحة العظام كلية الطب جامعة القاهرة

7.12

### ACKNOWLEDGMENT

All thanks to **ALLAH**, First and last for his countless gifts to me.

I would like to express my gratitude to **Prof. Dr. Hani Mohamadi**, Professor of Orthopaedic Surgery, for suggesting, his supervision, kind guidance, patience and continuous support.

I would like to express my deepest gratitude & appreciation to **Prof. Dr.Hisham Abdel Ghani** Professor of Orthopaedic Surgery, for his kind patience, kind guidance, and continuous support.

My deepest thanks and appreciation should go to **Dr. Mahmoud Abdel Karim**, Lecturer of Orthopaedic Surgery, Cairo University for his constant guidance and constructive criticism and his continuous support.

My deepest thanks and appreciation should also go to **Dr. Ahmed Hazem**, Lecturer of Orthopaedic Surgery, Cairo University, for his help, constant encouragement, continuous Support and everlasting skillful help.

Their favors will never be forgotten.

Then, I would like to extend my sincere gratitude to my family. Then I would like to express my deepest thanks and appreciation to **my mother** for her support all over my life.

### **CONTENTS**

| Contents                                    | Page NO. |
|---------------------------------------------|----------|
|                                             |          |
| Acknowledgment                              | i        |
| contents                                    | ii       |
| List of figures.                            | iii      |
| List of tables.                             | ii       |
| List of charts.                             | ii       |
| List of abbreviations.                      | ii       |
| Abstract                                    | ii       |
| Chapter 1: Introduction and aim of the work | 1        |
| Chapter 2: Review of literature.            | 4        |
| A-Anatomy                                   | 5        |
| B-Etiology                                  | 15       |
| C-Epidemiology                              | 18       |
| D- Diagnosis and Classification             | 21       |
| E-Radiographic examination                  | 27       |
| F-Treatment                                 | 31       |
| G-Complications                             | 51       |
| Chapter 3: Patients and methods.            | 58       |
| Chapter 4: Results.                         | 80       |
| Chapter 5: Discussion.                      | 88       |
| Chapter 6: Case presentation.               | 100      |
| Chapter 7:Summary and conclusion            | 123      |
| Chapter 8: References.                      | 134      |
| Arabic summary.                             | 142      |

### **LIST OF FIGURES**

| No | Figure Title                                                         | Page |
|----|----------------------------------------------------------------------|------|
| 1  | Anatomy of medial femoral circumflex artery                          | 8    |
| 2  | Anatomy of medial femoral circumflex artery                          | 8    |
| 3  | Anatomy of medial femoral circumflex artery                          | 9    |
| 4  | Anatomy of medial femoral circumflex artery                          | 10   |
| 5  | Anatomy of medial femoral circumflex artery                          | 11   |
| 6  | Anatomy of nutritive foramen.                                        | 12   |
| 7  | The modified Oxford bone score                                       | 20   |
| 8  | The slip angle measurement.                                          | 24   |
| 9  | The slip angle measurement.                                          | 25   |
| 10 | The Wilson radiological classification method                        | 25   |
| 11 | Frog-leg lateral pelvis showing signs of chronic SCFE                | 29   |
| 12 | Anteroposterior pelvis radiograph demonstrating Klein's line         | 29   |
| 13 | The coronal T1-weighted image shows signs of SCFE                    | 30   |
| 14 | In situ stabilization with single screw technique                    | 35   |
| 15 | In situ stabilization with single screw technique                    | 35   |
| 16 | Bone Graft Epiphysiodesis technique                                  | 36   |
| 17 | Southwick osteotomy technique                                        | 38   |
| 18 | Fish osteotomy technique                                             | 40   |
| 19 | Dunn osteotomy technique                                             | 43   |
| 20 | Trochanteric osteotomy diagram                                       | 44   |
| 21 | The capsulotomy incision diagram                                     | 45   |
| 22 | A diagram of hip after dislocation                                   | 46   |
| 23 | The femoral head separation from the femoral neck through the physis | 47   |
| 24 | Curettage out the remaining physis and provisional fixation          | 48   |
| 25 | AP radiograph showing AVN after SCFE                                 | 52   |

| 26 | AP radiograph of Rt hip showing chondrolysis.                    | 53  |
|----|------------------------------------------------------------------|-----|
| 27 | AP radiograph showing subtrochanteric fracture                   | 54  |
| 28 | Types of FAI                                                     | 55  |
| 29 | Cam-type impingement                                             | 55  |
| 30 | Pincer-type impingement                                          | 55  |
| 31 | ER deformity of the lt hip                                       | 64  |
| 32 | ER deformity of the lt hip in patient 13                         | 64  |
| 33 | ER and flexion deformity of the Rt hip in patient 5              | 64  |
| 34 | Limited flexion of the Lt hip in patient 4                       | 65  |
| 35 | LLD of about 2 cm in patient 7                                   | 66  |
| 36 | Method of alpha angle measurement on plain x-ray                 | 70  |
| 37 | Method of slip angle measurement on plain x-ray                  | 70  |
| 38 | Use of axial cut MRI to measure slip angle& alpha angle          | 71  |
| 39 | Use of axial cut CT to measure slip angle& alpha angle           | 71  |
| 40 | Skin incision for surgical hip dislocation.                      | 73  |
| 41 | Trochanteric osteotomy                                           | 74  |
| 42 | Drilling of head periphery to confirm viability                  | 75  |
| 43 | Intraoperative radiograph showing metaphyseal hump deformity     | 76  |
| 44 | Resection of the posteromedial callus                            | 77  |
| 45 | Removal of remaining physis                                      | 78  |
| 46 | Assure complete removal of callus                                | 78  |
| 47 | Repositioning of head                                            | 78  |
| 48 | Provisional K-wire fixation                                      | 78  |
| 49 | Intra-operative fluoroscopy to ensure correct positioning        | 78  |
| 50 | Preoperative ER+flexion deformity of case 1                      | 103 |
| 51 | Preoperative limited flexion of case 1                           | 103 |
| 52 | Preoperative AP ⪫ views of case 1                                | 103 |
| 53 | Preoperative slip angle measured 51 on axial MRI cuts of case 1  | 103 |
| 54 | Preoperative alpha angle measured 97 on axial MRI cuts of case 1 | 103 |
| 55 | An Intraoperative testing for viability of case 1                | 104 |
|    |                                                                  |     |

| 56 | Postoperative slip angle of 10 of case 1                                | 104 |
|----|-------------------------------------------------------------------------|-----|
| 57 | Postoperative alpha angle of 45 of case 1                               | 104 |
| 58 | Postoperative pelvis AP x-ray of case 1                                 | 104 |
| 59 | 2 month follow up showing union of osteotomy site and no evidence of    | 105 |
|    | AVN in case 1                                                           | 103 |
| 60 | 6 month follow up showing IR of 350 and correction of LLD in case 1     | 105 |
| 61 | 22-months follow up showing complete union of physis and osteotomy      | 106 |
| 01 | site with restoration of normal anatomy of the proximal femur in case 1 | 100 |
| 62 | Pre operative photograph showing flexion, ER deformity in case 2.       | 109 |
| 63 | Pre operative Pelvis AP radiograph of case 2                            | 109 |
| 64 | Pre operative MRI of case 2                                             | 109 |
| 65 | Pre operative axial CT of case 2                                        | 109 |
| 66 | Intraoperative photograph showing normal bleeding of head in case 2     | 110 |
| 67 | Immediate postoperative pelvis AP of case 2                             | 110 |
| 68 | Immediate postoperative pelvis frog lateral view of case2.              | 110 |
| 69 | Postoperative assessment of slip angle in case 2                        | 110 |
| 70 | Postoperative assessment of alpha angle in case 2                       | 111 |
| 71 | Postoperative photograph of ROM in case 2                               | 111 |
| 72 | 8 months follow up with good results in case 2                          | 111 |
| 73 | Preoperative alpha angle of case 3                                      | 114 |
| 74 | preoperative slip angle of case 3                                       | 114 |
| 75 | Preoperative MRI of case 3                                              | 114 |
| 76 | Preoperative CT of case 3                                               | 114 |
| 77 | Postoperative radiograph of case 3 with restoration of normal alpha and | 115 |
|    | slip angles                                                             |     |
| 78 | One year follow up of case 3                                            | 116 |
| 79 | Preoperative radiograph with assessment of pre operative slip and alpha | 119 |
|    | angles of case 4                                                        |     |
| 80 | Post operative radiograph with near normal correction of both slip and  | 120 |
|    | alpha angles in case 4                                                  |     |
| 81 | 6 months follow up of case 4 showing AVN of the head necessitating      | 121 |
|    | removal of the protruded implant                                        |     |

### The Modified Dunn Procedure

| 82 | 8 months follow-up of case 4 with established AVN and removal of all implants and SVO on contra lateral side | 121 |
|----|--------------------------------------------------------------------------------------------------------------|-----|
| 83 | 14 months follow-up of case 4.                                                                               | 122 |

### LIST OF TABLES

| No | Table Title                                                 | Page |
|----|-------------------------------------------------------------|------|
| 1  | Branches of MFCA                                            | 7    |
| 2  | The Fahey classification                                    | 23   |
| 3  | The Loder classification                                    | 23   |
| 4  | The Southwick classification                                | 24   |
| 5  | The Wilson classification                                   | 24   |
| 6  | Calculation of the osteoarthritis risk in long-term studies | 33   |
| 7  | Pre operative patient sheet                                 | 60   |
| 8  | Sex of patients and percentage of each group                | 61   |
| 9  | Affected side and percentage of each group 62               |      |
| 10 | Incidence of hypogonadism                                   | 63   |
| 11 | Merle d'Aubigne´ score                                      | 67   |
| 12 | Harris hip score                                            | 68   |
| 13 | WOMAC score                                                 | 69   |
| 14 | Comparison of pre &postoperative slip angle                 | 84   |
| 15 | Comparison of pre &postoperative alpha angle                | 85   |
| 16 | Comparison of pre &postoperative HHS                        | 87   |
| 17 | Comparison of pre &postoperative WOMAC score                | 87   |
| 18 | Comparison of pre &postoperative Merle d'Aubigne score      | 87   |
| 19 | Comparison of patient criteria                              | 91   |
| 20 | Comparison of classification criteria                       | 92   |
| 21 | Pre and post operative slip and alpha angles                | 93   |
| 22 | Comparison of postoperative ROM                             | 93   |
| 23 | Comparison of postoperative Clinical scores                 | 94   |
| 24 | Comparison of Fixation technique                            | 95   |

### The Modified Dunn Procedure

| 25 | Comparison of incidence of postoperative complications | 96 |
|----|--------------------------------------------------------|----|
| 26 | Comparison of need for another operation               | 97 |
| 27 | Comparison of Bleeding of head after reduction         | 99 |

### LIST OF CHARTS

| No | chart Title                                  | Page |
|----|----------------------------------------------|------|
| 1  | Age distribution of the patients group       | 61   |
| 2  | Sex of patients and percentage of each group | 61   |
| 3  | Affected side and percentage of each group   | 62   |
| 4  | Incidence of hypogonadism                    | 63   |
| 5  | Bleeding of head before dislocation          | 82   |
| 6  | Bleeding of head after dislocation           | 82   |
| 7  | Chondral injury                              | 83   |
| 8  | Method of fixation                           | 84   |
| 9  | Post operative complications                 | 85   |

### LIST OF ABBREVIATIONS

| SCFE  | Slipped Capital Femoral Epiphyses         |
|-------|-------------------------------------------|
| MFCA  | Medial Femoral Circumflex Artery          |
| FAI   | Femoro-Acetabular Impingement             |
| AVN   | Avascular Necrosis                        |
| СТ    | Computed Tomography                       |
| MRI   | Magnetic Resonance Imaging                |
| WOMAC | Western Ontario and McMaster Universities |
| AP    | Antero-Posterior                          |
| ROM   | Range Of Motion                           |
| H.O   | Heterotopic Ossification                  |
| O.A   | Osteoarthritis                            |
| BMI   | Body Mass Index                           |
| LLD   | Limb Length Discrepancy                   |

### **ABSTRACT**

<u>Introduction:</u> Surgical procedures with use of traditional techniques to reposition the proximal femoral epiphysis in the treatment of slipped capital femoral epiphysis are associated with a high rate of femoral head osteonecrosis. Therefore, most surgeons advocate in situ fixation of the slipped epiphysis with acceptance of any persistent deformity in the proximal part of the femur. This residual deformity can lead to secondary osteoarthritis resulting from femoroacetabular cam impingement.

Objective: The primary aim of our study was to report the results of the technique of capital realignment with Ganz surgical hip dislocation and its reproducibility to restore hip anatomy and function. In this study we looked for: (1) Radiological outcome, slip angle and alpha angle. (2) The incidence of major complications especially AVN. (3) Clinical outcome with recording the range of motion of the hip and evaluating short-term clinical scores (Merle d'Aubigne'-Harris hip score -WOMAC). (4) The extent of intra-articular damage and relating this to clinical stability and symptom duration. (5) Comparing our results to what was reported in the literature.

<u>Patients and Methods:</u> This prospective case series study included thirty-one patients (32 hips, 21 Lt hip and 11 Rt hip) with stable chronic slipped capital femoral epiphysis after surgical correction with a **modified Dunn** procedure.

This study included 26 males and 5 females. The mean age of our patients was 14.26 years (11-17 years). The mean duration of symptoms before the operation was 8.42 month (1 -26 months). Mean follow up period was 16.11 month (7-40 month).

The mean preoperative Alpha angle was  $99.97^{0}$  (range  $87^{0}$  -  $109^{0}$ ). The mean preoperative Slip angle was  $56^{0}$  (range  $40^{0}$ - $75^{0}$ ).

Harris hip score was done for all patients pre operatively and its mean was 67.91 (ranged from 61-74), mean Womac score was 64.03 (range 54-72), mean Merle d'Aubigne score was 12.09 (range 11-14).

Results: Twenty-seven patients, (28 hips) had excellent clinical and radiographic outcomes with respect to hip function and radiographic parameters. Four patients had fair to poor clinical outcome including 2 patients developed AVN, one case of deep infection and a case of limited flexion. The difference between those who developed AVN and those who didn't develop AVN was statistically significant in postoperative clinical scores (p 0.000).

The mean slip angle of the femoral head was  $56^{0}$  preoperatively and was corrected to a mean value of  $12^{0}$  postoperatively with mean correction of  $44^{0}$  (p 0.000). Mean postoperative Alpha angle was  $47^{0}$  (ranged from  $25^{0}$ - $60^{0}$ ), with mean correction of  $53^{0}$ (p 0.000).

Post operative flexion was ranged from 30 to 130 with mean of 104.34. Post operative IR in  $90^{0}$  flexion was ranged from 10 to 50 with mean of 40.Post operative ER in  $90^{0}$  flexion was ranged from 15 to 60 with mean of 45.

As regarding postoperative HHS, in our series its mean was 96.3 (ranged from 65 to 100) mean correction was 28.5 (p 0.000). Mean WOMAC score was 97 (ranged from 72 to 100) with mean correction of 33 (p 0.000). Mean Merle d'Aubigne score was 16.8 (ranged from 10 to 18) with mean correction of 4.8 (p 0.000).

<u>Conclusions:</u> This study showed that the treatment of slipped capital femoral epiphysis with the **modified Dunn** procedure allows the restoration of normal proximal femoral anatomy by complete correction of the slip angle, such that probability of secondary osteoarthritis and femoroacetabular cam impingement may be minimized. It also allowed direct inspection, preservation of physeal blood supply and inspection of intra-articular pathology which can be evaluated and treated at the time of operation.

The complication rate from this procedure in our series was low as compared to what was reported in other series in the literature.

# INTRODUCTION AND AIM OF THE STUDY