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ABSTRACT

The advantages of adding a tuned mass damper at the roof of structures to reduce
seismic acceleration response is discussed in the following chapters. Different
structure frames were analytically studied using a suite of nonlinear static push over
analysis and uniform building code UBC 97 regulations regarding response spectrum

functions.

The analyses indicate that adding tuned mass dampers has a notable effect on the
structure fundamental period as it increases causing decreasing of the seismic
acceleration response of the structure when applying time history or response spectra
records and comparing the structure behavior with and without using tuned mass

dampers.

Appropriate design of the rooftop tuned mass damper can be performed to decrease
the structure vibration during earthquakes and reducing the developed internal forces
in the structure which can leads to more economic design and can be used as a retrofit

measurc.

flexible structures having long fundamental periods seismic behavior is considered
to be a good behavior as a lower level of internal forces is developed during seismic
vibration than stiff structures with short fundamental periods. Base isolation was
developed to be used for rigid structures to make it act as a limber structure while
keeping the advantage of rigid structures. base isolation increases the fundamental
period of a structure causing less respond to lateral seismic acceleration. Any other
method that can cause the fundamental period of a structure to be increased can have

a similar effect of seismic base isolation.



Passive energy absorbing devices have many types, tuned mass damper (TMD) is one

of the familiar types which has been used in many structures.

In this study different steel framing systems are investigated with regards to their
lateral load carrying capacity and in this context seismic response modification
factors of individual systems are analyzed. Numerous load resisting layouts, such as
different bracing systems and un-braced moment resisting frames with various story
configurations are designed and evaluated in a parametric fashion. Two types of beam

to column connection conditions are incorporated in evaluation process.

The seismic behavior factor (R) is evaluated for steel frames portal and X-braced.
The R factor is composed of three main items including ductility reduction factor and
overstrength factor which are calculated based on the inelastic pushover analyses
results of each framing system regarding frame geometry (spans and heights) and the

used connection type.

Frames, designed according to UBC97 seismic code, are investigated by nonlinear
static analysis with the guidance of previous studies and recent provisions of FEMA.
Method of analysis, design and evaluation data are presented in details.

Previous studies in literature, history and the theory of response modification
phenomenon is presented. Results are summarized, main weaknesses and ambiguities
introduced to design by the use of “R” factors are stated depending on the observed

behavior.

Key words: Nonlinear analysis, steel frames, pushover analysis, tuned mass dampers
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