

Ain Shams University
Faculty of Engineering
Department of Civil Engineering

Inelastic Analysis of Frames with Tuned Mass Damper

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Structure Engineering

By Wael Adel Gairgis Oza

Supervised by

A.Prof. Dr. Bahaa Sharaf Associate Prof. of Structural Eng. University of Ain Shams **Dr. Mohamed Saafan**Assistant Prof. of Structural Eng.
University of Ain Shams

(2016)

Faculty of Engineering
Department of Civil Engineering

Inelastic Analysis of Frames with Tuned Mass Damper

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Structure Engineering

By Wael Adel Gairgis Oza

Supervised by

A.Prof. Bahaa Sharaf - Professor of Structural Engineering - University of Ain Shams

Dr. Mohamed Saafan - Professor of Structural Engineering - University of Ain Shams

Cairo (2016)

Ain Shams University
Faculty of Engineering
Department of Civil Engineering

Inelastic Analysis of Frames with Tuned Mass Damper

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in Structure Engineering

by Wael Adel Gairgis Oza

Examiners Committee

Signature

Prof. El Sayed Saad Abd el SalamProfessor of Structure Engineering (Emeritus Head)
University of Zagazig

Prof. Ibrahim Shawky Moharram

Professor of Structure Engineering University of Ain Shams

A.Prof. Bahaa Sharaf

Associate Professor of Structure Engineering University of Ain Shams

Date: 15/06/2016

DISCLAIMER

This thesis is submitted as partial fulfillment of M.Sc degree in structure Engineering, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author and no part of it has been submitted for a degree or qualification at any other scientific entity.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Name
Wael Adel Gairgis Oza
Signature

Date June 2016

ACKNOWLEDGEMENT

I am very grateful to my supervisors who worked with me very closely during the MSc process. These include Prof. Bahaa Turk and Prof. Mohamed Saafan.

I really learned a lot form them from the day when I was undergraduate till the master degree, they were really helpful and providing me with the support needed to accomplish this research.

ABSTRACT

The advantages of adding a tuned mass damper at the roof of structures to reduce seismic acceleration response is discussed in the following chapters. Different structure frames were analytically studied using a suite of nonlinear static push over analysis and uniform building code UBC 97 regulations regarding response spectrum functions.

The analyses indicate that adding tuned mass dampers has a notable effect on the structure fundamental period as it increases causing decreasing of the seismic acceleration response of the structure when applying time history or response spectra records and comparing the structure behavior with and without using tuned mass dampers.

Appropriate design of the rooftop tuned mass damper can be performed to decrease the structure vibration during earthquakes and reducing the developed internal forces in the structure which can leads to more economic design and can be used as a retrofit measure.

flexible structures having long fundamental periods seismic behavior is considered to be a good behavior as a lower level of internal forces is developed during seismic vibration than stiff structures with short fundamental periods. Base isolation was developed to be used for rigid structures to make it act as a limber structure while keeping the advantage of rigid structures. base isolation increases the fundamental period of a structure causing less respond to lateral seismic acceleration. Any other method that can cause the fundamental period of a structure to be increased can have a similar effect of seismic base isolation.

Passive energy absorbing devices have many types, tuned mass damper (TMD) is one of the familiar types which has been used in many structures.

In this study different steel framing systems are investigated with regards to their lateral load carrying capacity and in this context seismic response modification factors of individual systems are analyzed. Numerous load resisting layouts, such as different bracing systems and un-braced moment resisting frames with various story configurations are designed and evaluated in a parametric fashion. Two types of beam to column connection conditions are incorporated in evaluation process.

The seismic behavior factor (R) is evaluated for steel frames portal and X-braced. The R factor is composed of three main items including ductility reduction factor and overstrength factor which are calculated based on the inelastic pushover analyses results of each framing system regarding frame geometry (spans and heights) and the used connection type.

Frames, designed according to UBC97 seismic code, are investigated by nonlinear static analysis with the guidance of previous studies and recent provisions of FEMA. Method of analysis, design and evaluation data are presented in details.

Previous studies in literature, history and the theory of response modification phenomenon is presented. Results are summarized, main weaknesses and ambiguities introduced to design by the use of "R" factors are stated depending on the observed behavior.

Key words: Nonlinear analysis, steel frames, pushover analysis, tuned mass dampers

TABLE OF CONTENTS

ACKNOWLI	EDGME	NTS	i
ABSTRACT			ii
TABLE OF (CONTEN	NTS	iii
Chapter 1	INTE	RODUCTION	
	1.1	General Information	1
	1.2	Objectives and Scope	3
Chapter 2	LITE	ERATURE REVIEW	
	2.1	General	5
	2.2	Summary of Previous Work	5
	2.3	Examples of buildings with Tuned Mass Damper	7
		2.7.1 Citicorp Center	8
		2.7.2 Canadian National Tower	10
		2.7.3 Chiba Port Tower	11
Chapter 3 l	RESPON	NSE REDUCTION MODIFICATION FACTOR	
	3.1	Introduction	14
	3.2	Overstrength Factor	17
		3.2.1 Local Overstrength	17
		3.2.2 Global Overstrength	19
	3.3	Ductility Reduction Factor	20
		3.3.1 Miranda and Bertero	21
	3.4	Damping Factor	22
		3.4.1 Comparison of Proposed Factors in Some	
		Codes	23
	3.5	Redundancy Factor	24

		3.5.1	Previous Studies	24	
		3.5.2	NEHRP Provisions	25	
Chapter 4	PUSHOVER ANALYSIS				
	4.1	Introd	luction	26	
	4.2	Pusho	ver Analysis Procedure	26	
	4.3	Force	Deformation Relationships	27	
	4.4	Metho	od of Analysis Procedures Used in This Study	31	
	4.5	Frame	e Types	32	
		4.5.1	Frame Design	33	
	4.6	Non-L	inear Static Analysis	33	
		4.6.1	Beam and Column Member	33	
		4.6.2	Bracing Members	41	
	4.7	Partia	lly Restrained Connections	45	
	4.8	Capac	city Curve of Structures	50	
		4.8.1	Idealization of Capacity Curve	50	
		4.8.2	Sample Analysis Evaluation	52	
	4.9	Verifi	cations on TMD Analysis	56	
	4.10	Verifi	cations On Pushover Analysis	63	
Chapter 5	FRAN	MES AN	ALYSIS METHODS		
	5.1	Introd	luction	65	
	5.2	Frame	es Types	65	
	5.3	Frame	es Design	66	
	5.4	Tuned	l Mass Dampers	70	
	5.5	Pusho	ver Analysis	71	
	5.6	Detail	ed Analysis Example	96	

	5.7	Summary	102	
Chapter 6	SUM	SUMMARY AND CONCLUSION		
	6.1	Summary	103	
	6.2	Conclusion	104	

List of Figures

2.1 Schematic diagram of a translational tuned mass damper	8
2.2 The new Citicorp Center	9
2.3 CN Tower is the world's 6th tallest free-standing structure	10
2.4 Tuned mass damper for Chiba-Port Tower. (Courtesy of J. Connor.)	12
2.5 Tuned mass damper with spring and damper assemblage	12
2.6 Deformed position—tuned mass damper. (Courtesy of J. Connor.)	13
2.7 Tuned mass damper for Chiba-Port Tower. (Courtesy of J. Connor.)	13
3.1 Plots of Ductility Reduction Factors	22
3.2 Redundancy in Moment Resisting Frames	25
4.1 Component Force-Deformation (Risk indicator) Curve	28
4.2 Component Force-Deformation Curve as given in FEMA-356	30
4.3 Actual Hysteretic Behavior and its Backbone	31
4.4 Backbone Curves Further Idealized as Component Behavior Curves	31
4.5 Frame Types	51
4.6 Basic Force – Deformation Curve for Beam & Column Members	39
4.7 Moment – Plastic Rotation Curve for Beam Members	39
4.8 Moment – Plastic Rotation Curve for Column Members	40
4.9 Axial Force – Axial Deformation Curve for Column Members	40
4.10 Hysteretic Behavior of a Bracing Member Figure	41
4.11.a Basic Force – Deformation Curve for Bracing Members	44
4.11.b Axial Force – Axial Deformation Curve for Type "B" Bracing	44
4.12 Partially Restrained Connection Examples	46
4.13 Moment – Plastic Rotation Curve for PR Connections	49
4.14 Bi-linear Idealization of a Generic Capacity Curve	51
4.15 Geometry and Sections of the Sample Frames	52
4.16 Frames Types	53
4.17 Fundamental mode shape of undamped structure: period=0.70 s	56

4.18 Rooftop frame (RTMDF) during application of load	57
4.19 Fundamental mode of damped structure	58
4.20 Building frame geometry	60
4.21 Original frame Controlled and uncontrolled displacements	
of fifth floor	61
4.22 Verified frame controlled displacements of fifth floor with no TMD	62
4.23 Verified frame controlled displacements of fifth floor with TMD	62
5.1 Frames Types	66
5.2 Frames Geometry and Cross Sections	67
5.3 Base Shear Vs Roof Displacement	83
5.4 Frames Maximum Displacement (Centerline Connection)	98
5.5 Frames Maximum Displacement (Partially Restrained Connection)	98
5.6 Frames Base Shear (Centerline Connection)	99
5.7 Frames Base Shear (Partially Restrained Connection)	99
5.8 Frames Plastic Hinges Locations and Values	100

List of Tables

3.1 Comparison of proposed factors in some US codes	23
4.1 Gravity Loads	33
4.2 Beam and Column Member Local Slenderness Ratios	34
4.3 Beam, Column Sectional Properties & Yield Quantities	36
4.4 Moment-Plastic Rotation Data for Beams Members	37
4.5 Force-Deformation Data for Columns Members	38
4.6 Bracing Member Sectional Properties & Yield-Buckling Quantities	43
4.7 Force – Deformation Data for Brace Members	45
4.8 Partially Restrained Connection Strength Data	48
4.9 Force – Deformation Data for PR Connections	49
4.10 TMD verification example 1 results of time periods	59
4.11 TMD verification example 1 results of base shear	59
4.12 TMD verification example 2 results	61
4.13 Verifications on pushover analysis (HD Frames)	63
4.14 Verifications on pushover analysis (BR Frames)	64
4.15 Verifications on pushover analysis (ND Frames)	64
5.1 Gravity Loads	66
5.2 Frames TMD properties	70
5.3 Frame HD-3-3 1st Mode data	72
5.4 Frame HD-3-3 2 nd Mode data	72
5.5 Frame HD-3-3 3 rd Mode data	73
5.6 Frame HD-3-3 Combined Mode data	73
5.7 Frame HD-3-3-TMD 1 st Mode data	74
5.8 Frame HD-3-3-TMD 2 nd Mode data	74
5.9 Frame HD-3-3-TMD 3 rd Mode data	74
5.10 Frame HD-3-3-TMD Combined Mode data	75
5.11 Frame HD-3-6 Combined Mode data	75

5.12 Frame HD-3-6-TMD Combined Mode data	76
5.13 Frame HD-3-9 Combined Mode data	76
5.14 Frame HD-3-9-TMD Combined Mode data	77
5.15 Frame BR-3-3 Combined Mode data	77
5.16 Frame BR-3-3-TMD Combined Mode data	77
5.17 Frame BR-3-6 Combined Mode data	78
5.18 Frame BR-3-6-TMD Combined Mode data	78
5.19 Frame BR-3-9 Combined Mode data	79
5.20 Frame BR-3-9-TMD Combined Mode data	79
5.21 Frame ND-3-3 Combined Mode data	80
5.22 Frame ND-3-3-TMD Combined Mode data	80
5.23 Frame ND-3-6 Combined Mode data	80
5.24 Frame ND-3-6-TMD Combined Mode data	81
5.25 Frame ND-3-9 Combined Mode data	81
5.26 Frame ND-3-9-TMD Combined Mode data	82
5.27 Frames Results Comparison (Centerline Connection)	92
5.28 Frames Results Comparison (Partially Restrained Connection)	94

List of Abbreviations

TMD Tuned mass damper

HD High ductility frame

ND Normal ductility frame

BR Braced frame

CL Centerline connection type

PR Partially restrained connection type

SDOF Single degree of freedom

MDOF Multi degree of freedom