

SHEAR BEHAVIOR OF REINFORCED CONCRETE SHORT SANDWICH PANEL WALLS UNDER STATIC AND LATERAL CYCLIC LOADING

By

FATIMA AL ZAHRAA IBRAHIM ABD EL-LATIF REFAIE

A thesis submitted to the

Faculty of Engineering at Cairo University

In partial fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

SHEAR BEHAVIOR OF REINFORCED CONCRETE SHORT SANDWICH PANEL WALLS UNDER STATIC AND LATERAL CYCLIC LOADING

By

FATIMA AL ZAHRAA IBRAHIM ABD EL-LATIF REFAIE

A thesis submitted to the

Faculty of Engineering at Cairo University

In partial fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Mahmoud Tharwat El-Mihilmy Prof. Dr. Tarek Mohamed Bahaa EL-Din

Professor of Reinforced Concrete Structures
Structural Engineering
Department

Professor of Strength of Materials Building Materials Research and Quality Control Institute

Faculty of Engineering - Cairo University

Housing and Building National Research Center

Tarek Bahaa

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

SHEAR BEHAVIOR OF REINFORCED CONCRETE SHORT SANDWICH PANEL WALLS UNDER STATIC AND LATERAL CYCLIC LOADING

By FATIMA AL ZAHRAA IBRAHIM ABD EL-LATIF REFAIE

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In partial fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Tarek Bahaa

Approved by the **Examining Committee**

Prof. Dr. Mahmoud Tharwat El-Mihilmy

Professor of Reinforced Concrete Structures Faculty of Engineering – Cairo University

Prof. Dr. Tarek Mohamed Bahaa El-Din

Professor of Strength of Materials Housing & Building National Research Center

Prof. Dr. Ashraf Hassan El-Zanaty

Professor of Reinforced Concrete Structures Faculty of Engineering – Cairo University

Prof. Dr. Sayed Mohamed Abd El-Baky

Professor of Strength of Materials Housing & Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

Engineer:

Fatima Al Zahraa Ibrahim Abd El-Latif Refaie

Date of Birth:

26 / 8 / 1979

Nationality:

Egyptian

E-mail:

fatma alz@yahoo.com

Phone.:

01001810829 - 0238147290

Address:

6th of October City

52A- Familial Housing-(stage 3)

Registration Date:

1/3/2010

Awarding Date:

/ / 2016

Degree:

Doctor of Philosophy

Department:

Structural Engineering

Supervisors: Prof. Dr. Mahmoud Tharwat El-Mihilmy

Professor of Reinforced Concrete Structures, Faculty of Engineering, Cairo University

Prof. Dr. Tarek Mohamed Bahaa EL-Din

Professor of Strength of Materials, Housing & Building National Research Center

Examiners: - Prof. Dr. Sayed M. Abd El-Baky

Professor of Strength of Materials, Housing & Building National Research Center

- Prof. Dr. Ashraf Hassan El-Zanaty

Professor of Reinforced Concrete Structures, Faculty of Engineering, Cairo University

- Prof. Dr. Mahmoud Tharwat El-Mihilmy

Professor of Reinforced Concrete Structures, Faculty of Engineering, Cairo University

- Prof. Dr. Tarek Mohamed Bahaa EL-Din

Professor of Strength of Materials, Housing & Building National Research Center

Title of Thesis: "Shear behavior of reinforced concrete short sandwich panel walls under static and

lateral cyclic loading"

Key Words: sandwich panel walls, lateral cyclic loading, softened strut and tie model

Summary:

The main objective of the research program is to evaluate the shear performance of short sandwich panel walls. The experimental work is divided into two phases. The first phase aims to determine the shear strength of square sandwich panels under static diagonal compression loads. The second phase objective is to study the behavior of sandwich panel short walls under lateral cyclic loads. The applicability of available shear strength prediction equations of convention concrete walls in prediction shear strength of the sandwich panel walls was evaluated. An analytical model to estimate the sandwich panel wall strength was developed based on the softened strut and tie model.

DEDICATED TO:

MY WONDERFUL **MOTHER**

MEMORY OF MY **FATHER**

MY LOVELY SISTER

&

MY GREAT BROTHRS

ACKNOWLEDGEMENTS

All praise and glory to Almighty ALLAH (SWT) who gave me the strength and the patience to complete this thesis.

I have been amazingly fortunate to have advisors who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. I would like to express my sincere gratitude and thanks to Prof. Dr. Mahmoud EL-Mihilmy for his continuous encouragement, help and stimulating. His valuable comments and his efforts in reviewing the manuscript are greatly appreciated. My great appreciation to Prof. Dr. Tarek M. Bahaa El-Din for his generous guidance and encouraging, sincere help, consistent support by all means and precise advice through all stages of my work. His patience and support helped me overcome many difficult situations and finish this thesis.

Very special thanks goes out to Prof. Dr. Mohamed Sayed who has been always there to listen and give advice. He supported, encouraged and helped me throughout the work time. I doubt that I will ever be able to convey my appreciation fully, but I owe him my eternal gratitude.

I would like also to extend my deep thanks to Prof. Dr. Yehia M. Abd-El Magid, head of concrete construction testing laboratory, for providing me with all the necessary support to accommodate the setup and loading protocol of the experimental phase of this study.

During my research work, Dr. Wael Hassan offered me a lot of friendly help; he transferred to me his research links and suggested to me the necessary readings for pursuing this research. Our discussions enlightened my way of thinking, and so I would like to give my sincere thanks for his generous help.

My sincere thanks to Prof. Dr. Mohamed Khafaga, head of building materials and quality control research institute, for his patience and support.

I would like to express my gratitude to my colleagues Dr. Sherif Khafaga, Dr. Shady Nabil, Dr. Sayed Hussien, Dr. Enas Khattab, Dr. Ghada Diaa and Dr. Amal Belal for their support and help.

Special thanks are owed to the laboratories technical staff of Housing and Building National Research Center for their help in the experimental work.

I would like also to express my gratitude to my friend Dr. Amal Abd El-Moneim for her continuous encouragement and support. I greatly value her friendship and I deeply appreciate her belief in me.

Most deserving of special gratitude is my kind family, my wonderful mother, my sister and my brothers for their encouragement, support and devotion. I am especially grateful for my mother unconditional love, prayers and patience.

ABSTRACT

Cast in situ reinforced concrete sandwich panel structural system is considered one of the promising panelized systems. The main advantage of this system is the combination of insulation properties and the ease of manufacturing and construction.

Walls in the sandwich panel structural systems play the role of bearing and shear walls. The previous research works on sandwich panel walls focused on the walls tested under vertical loads or the three dimensional structures under seismic loads. However, there is a lack of experimental works on sandwich panel walls subjected to lateral in-plane loads.

Shear behavior of reinforced concrete sandwich panels was investigated in this study through a two-phase experimental program. The first phase aimed to evaluate the shear strength of five square sandwich panels tested under diagonal compression loads. The effect of horizontal reinforcement ratio and compressive strengths of the concrete layers on the performance measures is evaluated.

The second phase included testing two-third scale eleven sandwich panel walls under quasi-static cyclic lateral loads accompanied with constant axial loads. The main parameters of the tested specimens were wall edge detailing, wall aspect ratio, lateral reinforcement ratio, concrete compressive strength of the structural layers, axial load level and the presence of window or door openings. The influence of the key parameters on the behavior of the tested walls was evaluated through the performance measures. These measures included shear strength, stiffness, ductility and energy dissipation.

The limited database in the literature disabled the opportunity for developing provisions for shear strength prediction of the sandwich panel walls. This resulted in the necessity of resorting to the provisions of reinforced concrete walls to predict the shear strength of the sandwich panel walls. Twelve prediction provisions from different codes, guidelines and research studies were presented. Statistical evaluation of the ratios between experimental and predicted shear strength values was conducted to select the most reasonable predictive provisions. The New Zealand Code NZS 3101:2006 presented the best code prediction provisions that correlated best with test results.

A rational analytical model was needed to simulate the behavior of short sandwich panel walls subjected to both axial and lateral loads. A softened strut-and-tie analytical model was proposed. The model satisfied the equilibrium of stresses, compatibility of strains and the constitutive relationships of concrete and steel. The proposed model was verified using the experimental results and exhibited reasonable shear strength predictions.

		Page
Dedic	ation	i
Ackno	owledgements	ii
Abstra	act	iii
Table	of contents	iv
List o	ftables	X
List o	f figures	xii
СНА	PTER (1): Introduction	
1-1	General	1
1-2	Problem statement	1
1-3	Research objective and scope	2
1-4	Research organization	2
CHA	PTER (2): Literature Review	
2-1	General	4
2-2	Structural insulated panels	4
2-3	Concrete sandwich panels	4
2-4	Completed in situ sandwich panels construction system	5
2-4-1	Prefabricated panel components	5
2-4-2	Installation panels in situ	6
2-4-3	Concrete installation	10
2-5	Structural behavior of sandwich panels walls	10
2-5-1	Behaviour of sandwich panels walls under compression load	10
2-5-1-	Behaviour of sandwich panels walls under concentric axial load	12
2-5-1-		14
2-5-2	Behaviour of sandwich panels structures under in-plane lateral loads	15
2-5-2-	C 1	15
2-5-2-	·	17
2-5-2-	Three dimensional models	23

		Page
2-6	Conclusions	26
CHAPT	TER (3): Experimental Work	
3-1	General	27
3-2	Description of the sandwich panel modules	27
3-3	Materials characteristics	28
3-3-1	Module constituents	28
3-3-1-1	Polystyrene	28
3-3-1-2	Galvanized steel wires	28
3-3-2	Reinforcing Steel	29
3-3-3	Concrete constituents	30
3-3-3-1	Fine aggregate	30
3-3-3-2	Coarse aggregate	31
3-3-3-3	Cement	33
3-3-3-4	Silica fume	33
3-3-3-5	Mixing water	33
3-3-3-6	Superplasticizer admixtures	33
3-3-3-7	Bonding agent	33
3-4	Proportions of concrete mixes	33
3-5	First phase: testing of square sandwich panels under diagonal compression loading	34
3-5-1	Erection and preparation of specimens of phase I	37
3-5-1-1	Preparation of panels	37
3-5-1-2	Head construction	37
3-5-1-3	Applying concrete layers	38
3-5-2	Test setup of phase I	39
3-5-3	Instrumentation	41
3-6	Second phase: testing of squat sandwich panels walls under seismic loads	42
3-6-1	Details of tested specimens	43
3-6-1-1	First stage (Specimen W0)	43
3-6-1-2	Second stage (Specimens W1 and W2)	46

		Page
3-6-1-3	Third stage (Specimens W3:W10)	49
3-6-2	Erection and preparation of specimens of phase II	57
3-6-2-1	Bottom beam	57
3-6-2-2	Anchoring to foundation	58
3-6-2-3	Preparation of panels	59
3-6-2-4	Positioning of the modular panels	59
3-6-2-5	Reinforcement of boundary elements	60
3-6-2-6	Reinforcement of top beams	61
3-6-2-7	Alignment of specimens	61
3-6-2-8	Applying concrete	62
3-6-2-9	Openings	65
3-6-3	Test setup of phase II	68
3-6-4	Instrumentation	68
3-6-5	Test procedure	71
СНАРТ	TER (4): Presentation And Evaluation of Test Results of Phase I	
4-1	General	72
4-2	Presentation of test results	72
4-2-1	Cracking behavior and mode of failure	73
4-2-2	Load – displacement relations	78
4-3	Analysis of test results	80
4-3-1	Shear stress and shear strain computations	81
4-3-2	Stress- strain plots	82
4-3-3	Strength	84
4-3-4	Stiffness	84
4-3-5	Toughness and energy absorption	85
4-4	Effect of test parameters on the specimens performance	86
4-4-1	Effect of horizontal reinforcement ratio	86
4-4-2	Effect of concrete compressive strength	87

		Page	
CHAPT	ER (5): Presentation And Evaluation of Test Results of		
	Phase II		
5-1	General	88	
5-2	Presentation of test results	88	
5-2-1	Cracking behavior and mode of failure	89	
5-2-2	Load-displacement hysteresis loops	101	
5-2-3	Strains in the horizontal and vertical galvanized steel wires	107	
5-3	Analysis of test results	113	
5-3-1	Strength	114	
5-3-2	Stiffness degradation	114	
5-3-3	Ductility	121	
5-3-4	Energy dissipation	122	
5-4	Effect of test parameters on the specimens performance	128	
5-4-1	Effect of boundary element type	128	
5-4-2	Effect of walls aspect ratio	130	
5-4-3	Effect of horizontal reinforcement ratio	131	
5-4-4	Effect of concrete compressive strength	132	
5-4-5	Effect of axial load level	133	
5-4-6	Effect of openings	134	
CHAPTER (6): Evaluation of Current Predictive Equations of Shear Strength for Sandwich Panels Short Walls			
6-1	General	136	
6-2	Predictive shear strength equations	136	
6-2-1	Building codes and guidelines equations	137	
6-2-2-1	ACI 318-14	137	
6-2-1-2	The Egyptian code ECP203-2007	138	
6-2-1-3	The New Zealand Code NZS 3101:2006	139	
6-2-1-4	The Canadian Code CSA-A23.3-14	139	
6-2-1-5	ASCE/SEI 43-05	140	

_			
			Page
	6-2-2	Equations provided by the literature	140
	6-2-2-1	Barda et al. (1977)	140
	6-2-2-2	Wood (1990)	142
	6-2-2-3	Sánchez-Alejandre and Alcocer (2010)	142
	6-2-2-4	Gulec and Whittaker (2011)	142
	6-2-2-5	Carrillo and Alcocer (2013)	143
	6-3	Characteristics of selected tested specimens	144
	6-4	Comparison between predicted and experimental shear strengths	145
	6-4-1	Evaluation of codes equations	150
	6-4-2	Evaluation of literature equations	154
	6-5	Best prediction provisions	161
	СНАРТ	ER (7): Analytical Model for Predicting Shear Strength for Sandwich Panels Short Walls	
	7-1	General	168
	7-2	Softened strut-and-tie model	169
	7-2-1	Identification of the strut-and-tie model	169
	7-2-1-1	The shear element	169
	7-2-1-2	Diagonal mechanism	170
	7-2-1-3	The horizontal mechanism	170
	7-2-1-4	The vertical mechanism	170
	7-2-2	Equilibrium equations	172
	7-2-2-1	Equilibrium of forces	172
	7-2-2-2	Resisting forces values	175
	7-2-2-3	Critical nodal zone strength	178
	7-2-3	Compatibility equations	178
	7-2-4	Constitutive laws of materials	179
	7-2-4-1	Constitutive laws of concrete	179
	7-2-4-2	Constitutive laws of steel	181
	7-2-5	Solution procedure	182
	7-3	Experimental verification of the proposed model	186

		Page
CHAPT	TER (8): Summary, Conclusions and Recommendation	
8-1	Summary	189
8-2	Conclusions	189
8-2-1	Conclusions drawn based on the experimental program	189
8-2-2	Conclusions drawn based on the assessment of shear strength prediction provisions	191
8-2-3	Conclusions drawn based on the proposed analytical model	191
8-3	Recommendations	192
8-4	Recommendations for future studies	192
REFEI	RENCES	193

List of Tables

		Page
СНАРТ	TER (2): Literature Review	
2.1	Data base of sandwich panels tested under axial and eccentric loading	11
2.2	Data base of sandwich panels tested under axial and eccentric loading	19
СНАРТ	TER (3): Experimental Work	
3.1	Mechanical properties of galvanized steel wires	28
3.2	Mechanical properties of reinforcing steel bars	30
3.3	Physical properties of sand	30
3.4	Grading of sand	30
3.5	Physical and mechanical properties of dolomite	31
3.6	Grading of dolomite	32
3.7	Mechanical and physical properties of cement	33
3.8	Proportions of concrete mixes	34
3.9	Details of specimens of phase I.	34
3.10	Details of specimens of phase II.	44
CHA	APTER (4): Presentation And Evaluation of Test Results of ph	ase I
4.1	Test results for phase I	72
4.2	Performance measures for phase I specimens	80
CHA	APTER (5): Presentation And Evaluation of Test Results of Pha	ase II
5.1	Load-displacement test results for phase II	89
5.2	Performance measures for phase II specimens	113

List of Tables

		Page
СНАРТ	TER (6): Evaluation of Current Predictive Equations of Shear Strength for Sandwich Panels Short Walls	
6.1	Characteristics of the tested specimens	145
6.2	Predicted peak shear strength by codes equations	146
6.3	Predicted peak shear strength by literatures equations	147
6.4	Statistics of ratio of shear strength predicted using codes equations to experimental tests results	148
6.5	Statistics of ratio of shear strength predicted using literature equations to experimental tests results	149
СНАРТ	TER (7): Analytical Model For Predicting Shear Strength or Sandwich Panels Short Walls	
7.1	Input data for the resistance mechanisms	186
7.2	Model results and statistics of calculated-to-experimental shear strength ratios	187