ESTIMATION OF PLASMA MICRORNA-192 IN PATIENTS WITH DIABETIC NEPHROPATHY

Thesis

Submitted for the partial fulfillment of the requirement of M.D. degree of internal medicine

Presented by

Ghada Rabie Abdel Aziz Ahmed

Supervised by

Prof. Dr. Mohamed Gamal El-Din Saadi

Professor of Internal Medicine
Faculty of Medicine- Cairo University

Prof. Dr. Amr Abdel Hady Elmeligi

Professor of Internal Medicine Faculty of Medicine- Cairo University

Prof. Dr. Mervat Saad El-Ansary

Professor of Clinical Pathology Faculty of Medicine- Cairo University

Dr. Alkhatib Kadry Alkemary

Lecturer of Internal Medicine Faculty of Medicine- Cairo University

Faculty of Medicine Cairo University 2015

Acknowledgement

First of all, thanks to "Allah" who granted me the ability to accomplish this work.

I would like to express my deepest gratitude and highest appreciation to **Dr. Mohamed Gamal El-Din Saadi,** Professor of internal medicine for his continuous encouragement, generous support and unlimited help.

I am extremely grateful to **Dr. Amr Abdel Hady Elmeligi,** Professor of internal medicine, for his continuous guidance and suggestions, saving no effort or time to make this work better.

I am greatly honored to express my deepest appreciation to **Dr. Mervat Saad El-Ansary**, Professor of clinical pathology for her outstanding guidance and kind support throughout the work.

I express my deep sense of gratitude to **Dr. Alkhatib Kadry Alkemary**, lecturer of internal medicine who had to bear a heavy load of responsibility and concern in bringing this work to a successful end.

Ghada Rabie Abdelaziz

<u>Dedications</u>

I dedicate this work to my beloved family especially my parents whose affection, love, encouragement and prays of day and night make me able to get such success and honor, my husband and my Sweet daughters who provided me with strong love shield that always surrounded me and never lets any sadness enter inside.

Abstract

Diabetic nephropathy (DN) is the leading cause of kidney failure. This study was designed to evaluate the blood level of microRNA-192 and its relation to the disease severity in patients with type2 diabetes mellitus with and without evidence of diabetic nephropathy evidenced by presence of albuminuria expressed by urinary Albumin/Creatinine ratio. We found that microRNA-192 levels were significantly higher in patients with lower eGFR and higher Albumin/Creatinine ratios. Our findings may help to find a new marker for detection of diabetic nephropathy and this could be used in the future as a novel therapeutic approach for treatment of diabetic nephropathy.

Key Words:

- 1. Type 2 diabetes mellitus (T2DM)
- 2. Diabetic nephropathy (DN)
- 3. Albumin/Creatinine ratio
- 4. microRNA-192

List of Contents:

Topic	page
List of Abbreviations	I
List of tables	
List of figures and diagrams	VII
Introduction and aim of work	
Review of Literature	
Chapter one	
Type 2 Diabetes Mellitus	4
Chapter two	
Complications of Diabetes Mellitus	49
Chapter three	
MicroRNAs and Diabetes	96
Chapter four	
• micRNA-192	123
Participants and Methods	
Results	142
Discussion	163
Summary and Recommendations	
References	
Arabic summary	

List Of Abbreviations

AACE	American Association of Clinical Endocrinologists
ACCORD	Action to Control Cardiovascular Risk in Diabetes
ACE	Angiotensin Converting Enzyme
ACR	Albumin-to-Creatinine Ratio
ADA	The American Diabetes Association
ADAR1	Adenosine deaminase acting on RNA1
AER	Albumin excretion rate
AGEs	Advanced glycation end products
Apo1A-1	Apolipoprotein 1A-1
ARB	Angiotensin receptor blocker
AUC	Area under the curve
BDNF	Brain-derived neurotrophic factor
ВМІ	Body mass index
BMPs	Bone morphogenetic proteins
ВР	Blood pressure
BUN	Blood urea nitrogen
CBC	Complete blood count
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
CKD	Chronic kidney disease
Col1a2	Collagen 1a2
COX-2	Cyclooxygenase-2
CRP	C-reactive protein
CSA	Cross-sectional area
CSII	Continuous subcutaneous insulin infusion

СТ	The threshold cycle
Cut	Cut-off point
CVD	Cerebrovascular disease
DCCT	Diabetes Control and Complications Trial
DME	Diabetic macular oedema
DNA	Deoxyribonucleic acid
DPN	Diabetic polyneuropathy
DPP-4	Dipeptidyl peptidase IV
DR	Diabetic retinopathy
DSPN	Distal symmetric polyneuropathy
DN	Diabetic nephropathy
EASD	European Association for the Study of Diabetes
EC	Endothelial Cell
ECM	Extracellular matrix
eGFR	Estimated glomerular filtration rate
ER	Endoplasmic reticulum
ESRD	End-stage renal disease
FC	Fold change
FFA	Free fatty acid
FPG	Fasting plasma glucose
GAD	Glutamic acid decarboxylase
GDM	Gestational diabetes
GFR	Glomerular filtration rate
GIPR	Gastric inhibitory polypeptide receptor
GLP-1	Glucagon like peptide 1
GLUT-4	Glucose transporter 4
GWAS	Genome-wide association studies

HbA1c	Glycohemoglobin
HbF	Fetal hemoglobin
HDL	High density lipoprotein
HG	High glucose
HMGA1	High mobility group A1
HMGA2	High Mobility Group AT-Hook 2
HOMA-IR	Homeostatic model assessment for insulin resistance
HUVECs	Human Umbilical Vein Endothelial Cells
IA	Islet autoantibodies
ICA	Islet cell antibodies
ICAM-1	Intercellular adhesion molecule 1
IDNT	Irbesartan Diabetic Nephropathy Trial
IFG	Impaired fasting glucose
IGF-1	Insulin like growth factor-1
IGT	Impaired glucose tolerance
INSR	Insulin receptor gene
LADA	Latent autoimmune diabetes of the adult
LDL	Low-density lipoprotein
LVEF	Left ventricular ejection fraction
MC	Mesangial Cells
MCP-1	Monocyte Chemoattractant Protein 1
MCPIP1	Monocyte Chemo attractant Protein-1-induced Protein 1
MDRD	Modification of Diet in Renal Disease
MGB	Minor groove binder
MI	Myocardial infarction
micRNAs	MicroRNAs
MMVEC	Myocardial microvascular endothelial cells

MODY	Maturity onset diabetes of the young
NCV	Nerve conduction velocity
NFQ	Nonfluorescent quencher
NO	Nitric oxide
NPDR	Nonproliferative diabetic retinopathy
NPH	Neutral Protamine Hagedorn
NPV	Negative predictive value
OGTT	Oral glucose tolerance test
PAI-1	Plasminogen activator inhibitor 1
PCOS	Polycystic ovary syndrome
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
PDR	Proliferative diabetic retinopathy
PPV	positive predictive value
PTCs	Proximal tubular cells
QAFT	Quantitative autonomic function tests
QST	Quantitative sensory tests
QUICKI	Quantitative insulin sensitivity check index
RAGE	Advanced glycation end products
RECs	Retinal endothelial cells
RISC	RNA-induced silencing complex
ROC	Receiver Operating Characteristics
ROS	Reactive oxygen species
Rq	Relative quantification
RT	Reverse Transcription
RT-PCR	Reverse Transcription – Polymerase Chain Reaction
SGLT-2	Sodium-Glucose Transporter-2

siRNA	Small (or short) interfering RNA
SMBG	Self-monitoring of blood glucose
SNPs	Single-nucleotide polymorphisms
SRF	Serum response factor
STAT	Signal transducer and activator of transcription
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TGF-β1	Transforming growth factor-β1
TZDs	Thiazolidinediones
UKPDS	United Kingdom Prospective Diabetes Study
VCAM-1	Vascular cell adhesion molecule 1
VEGF	Vascular endothelial growth factor
VLDL	Very-low-density lipoprotein
VSMC	Vascular smooth muscle cells
WHO	World Health Organization

List Of Tables

Table		
number	Title	Page
1-1	Natural history of Diabetic Nephropathy	85
1-2	Albuminuria categories in CKD	90
2-1	Components of master mix	135
2-2	Components of PCR Reaction	137
3-1	Comparison of the four groups regarding sex	142
3-2	Comparison of the four groups regarding age	143
3-3	Comparison of the four groups regarding kidney function (Creatinine & eGFR)	144
3-4	Comparison of the four groups regarding HbA1c	145
3-5	Comparison of the four groups regarding microRNA-192 value	146
3-6	Comparison of micro RNA-192 regarding sex	148
3-7	Correlation of micro RNA-192 value with albumin/ Creatinine (A/C) ratio within the whole group & within each group separately	149
3-8	Correlation of micro RNA-192 value with other parameters within the whole group & within each group seprately	154
3-9	Summary from both ROC curves	159

list of figures and Diagrams

Figure	Title	Page
1-1	Simplified scheme for the pathophysiology of type 2 diabetes mellitus	17
1-2	Simple schema for the pathogenesis of diabetic nephropathy	87
1-3	Screening for and prevention of the progression of microalbuminuria in diabetes mellitus	92
1-4	MicroRNA biogenesis	98
1-5	The main micRNAs that have been reported to play a role in diabetic nephropathy	118
2-1	Two-step RT-PCR	133
3-1	micRNA-192 levels in diabetic groups	147
3-2	plot of micRNA-192 expression versus A/C ratio in the whole sample	150
3-3	plot of micRNA-192 expression versus A/C ratio in the Normo- albuminuria group	151
3-4	plot of micRNA-192 expression versus A/C ratio in the Micro-albuminuria group	152
3-5	plot of micRNA-192 expression versus A/C ratio in the Macro-albuminuria group	153
3-6	plot of micRNA-192 expression versus MDRD eGFR in the whole sample	155
3-7	plot of micRNA-192 expression against HbA1c levels in the whole sample	156
3-8	ROC curve analysis to explore the discriminant ability of micRNA- 192 value in differentiation of group II from group I	157
3-9	ROC curve analysis to explore the discriminant ability of micRNA- 192 value in differentiation of group III from group II	158

INTRODUCTION

With 285 million individuals affected worldwide in 2010 and more than 400 million expected in 2030, Diabetes mellitus is a major public health concern and a huge economic burden (**Romano, 2010**).

There remains a critical need to better understand the underlying disease mechanism responsible for diabetes complications in order to develop new and improved therapeutic strategies for these chronic conditions (**Kantharidis et al., 2011**).

New insights have come from unlikely alley, the worm C.elegans, in which research has identified a novel family of endogenous, small (~ 22 nucleotides), single stranded, noncoding RNA molecules known as microRNAs (micRNAs) as developmental regulators (Lee et al., 1993). These molecules, only identified in humans in the last decade, modulate physiological and pathological processes by the post transcriptional inhibition of gene expression (Van Rooij, 2011).

Whether these micRNAs are involved in the damage that occurs in diabetes is yet to be established. The association between altered micRNA expression and the development and progression of the various diabetes complications implicates certain micRNAs in the development of diabetes-related injury in the heart, kidney, peripheral nerves, and retina (Kantharidis et al., 2011).