

CLETTON TRIVING CONTROLLED

ثنيكة المعلومات الجامعية

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغيار من 40-20 % منوية ورطوبة نسبية من 20 – 40 % To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

تسكة المعلومات الجامعية

بعض الوثائق

الأصلية تالفة

ثبيكة المعلومات الجامعية

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Electrical Communications Engineering Department

New MOSFET Device for Precision Measurement of Microwave Signal Polarization

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering

Submitted By

Esam Yosry Mohamed Hasan

B.Sc. of Electrical and Computer Engineering
(Electrical and Computer Engineering)
Higher Technological Institute, 1993

Supervised By

Prof. Dr. Mohamed Marzouk Ibrahim
Prof. Dr. Mohamed Abd-Elsadek Nour
Dr. Ali Ahmed Abu-Elnour

VYAN

Cairo - 2001

بسم الله الرحمن الرحيم

"و ما أوتيتم من العلم إلا قليلا"

صدق الله العظيم

Examiner's Committee

Name of the season Mohamed Hasan

Thereis I New Miss F3 Device for Precision

Measurement of Microwave Signal Polarization

Degree : Master of Secunce in Electrical Engineering

Name, This and Affinistion Signature

Dr. El-sazed v. Filkhan Peuf Finer, Court Lovissay

mul) (and)

M. HATZONK Ibrahim

Wife South

Faculty of knowners observation being Dept.

Prof. Emer. Alexand is conversity.

Faculty of the electrons.

Electrical Engineering Departmen

Dr. Admed Shairs Shav-El-Soud

Dr. M. Marzouk throkum Prof. Emer, Ais Seams University

Faculty of Engineering

Electronics & Lieut Commun. Eng. Dept.

Dr. M. Abd-kisadek Nour Prof., Higher feenrodogreal lastitute, 10th of Ramadan (113) Electrical and Computer Lugineering

Date : 3/1/ 2000

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering from Electronics and Electrical Communications Engineering Department.

The work included in this thesis was carried out by the author at the Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other University or Institution.

Date : 1 / 1 / 2001

Signature : Om

Name : Esam Yosry Mohamed Hasan

Ter

tap.

ACKNOWLEDGMENT

To Prof. Dr. Mohamed Marzouk Ibrahim: Great thanks for your deepest encouragement, many valuable precious discussions, reading and final correction of this thesis.

To Prof. Dr. Adel Ezzat El - Hennawy: You opened the door to a New World for me, I am forever grateful.

To Prof. Dr. Mohamed Abd-Elsadek Nour: Thank you for your continuous encouragement, valuable discussions, and precious advises.

To Dr. Ali Ahmmed Abou EI-Nour: Special great thanks for your continuous support, daily discussions, close supervision, learning and invaluable advises.

To Dr. Waael Fikry Farouk: Thank you for your deepest support, giving simulation programs, codes and valuable advises.

To Prof. Dr. Sameer El-Ghazaly at Arizona University: Thank you for your deepest support, supplying papers and valuable advises.

To Prof. Dr. Tayel Dabbous: The years of learning from you were valuable, I am forever grateful.

To Prof. Dr. Saeed Biomey: Thank you for your deepest support and invaluable advises.

To Prof. Dr. Hosny El-Metaffy: The years of learning from you were invaluable, I am forever grateful.

To my parents: Thank you for your continuous encouragement and deepest support. You are my inspiration to always do better.

To my sister and my brothers: Thank you my dear sister and my dear brothers for understanding.

To my wife: Special deep thanks for my wife for continuous encouragement, deepest support and great patient during this work.

And finally, I am also grateful to all professors, staff members, and my colleagues of Electrical and Computer Engineering Department, Higher Technological Institute, 10th of Ramadan City who supported and encouraged me during my research. Thanks also to my students.

ABSTRACT

A great attention has been recently given to the development and realization of precise MOSFET IC magnetic field detectors. This is referred to the remarkable enhancements in device concepts and technology and because precision magnetic field detectors found wide field of applications. Many magnetic field detectors and sensors are in use and satisfying performance requirements. However, most are neither cost effective or reliable. Moreover, they are bulky, heavy and sophisticated. Also, they can't be integrated using MOSFET technology on a single chip.

In this thesis, an accurate and efficient two-dimensional physical simulator is developed to analyze the operation and performance of MOS Magnetic Field Detector. The simulator is able to determine accurately the effect of externally applied magnetic field on the electrical characteristics of MOSFET. This is achieved by efficient coupling of the magnetic field equation with the transport equation, which describes the electrical behavior of the MOSFET transistor. The sensitivity of the detector for both dc and ac magnetic field at different frequencies is investigated. Finally, we simulate the new proposed detector for magnetic field magnitude detection and orientation and we try to obtain high sensitivity and to see how this device can applicable for microwave measurements and what the main parameters are which affect the device performance in microwave area.

The new proposed detector is designed of a short channel MOSFET, acting as a lateral carrier injector, surrounded by four diffused collectors, which are topologically, arranged so as to detect the magnitude and direction of the magnetic field to be measured or monitored and determine its orientation.