

A COMPARATIVE STUDY BETWEEN TRUE TUMESCENT LOCAL ANESTHESIA TECHNIQUE AND OTHER CONVENTIONAL ANESTHETIC REGIMENS IN LIPOSUCTION

Presented by

May Mostafa Darwish Mostafa

(M.B.B.Ch) Ain Shams University (M.Sc) Degree in Anesthesiology Faculty of Medicine - Ain Shams University Supervised By

Prof. Dr. Zakaria Abdel Aziz Mustafa

Professor of Anesthesiology, Intensive Care and Pain management Faculty of Medicine - Ain Shams University

Prof. Dr. Mohamed Hossam Shokeir

Professor of Anesthesiology, Intensive Care and Pain management Faculty of Medicine - Ain Shams University

Dr. Safaa Ishak Ghaly

Assistant Professor of Anesthesiology, Intensive Care and Pain management Faculty of Medicine - Ain Shams University

Dr. Wael Sayed Abd El-ghaffar El-gharabawy

Lecturer of Anesthesiology, Intensive Care and Pain management Faculty of Medicine - Ain Shams University

Dr.Ahmad Fathy El Sherif

Assistant Professor of Plastic Surgery
Faculty of Medicine - Ain Shams University
Faculty of medicine
Ain Shams University

2016

First and foremost, I would like to thank **Allah**, the most gracious, beneficent and the most merciful, for achieving any work in my life.

I would like to express my gratitude and sincere appreciation to Professor Doctor/Zakaria Abdel Aziz Mustafa, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his remarkable effort, considerable help and continuous guidance which were the major factors behind completion of this work.

My deepest gratitude is also to **Professor Doctor/ Mohamed Hossam Shokeir,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his valuable advice and remarks that have been of utmost help.

I am deeply indebted to **Doctor/ Safaa Ishak Ghaly**, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her extreme patience and keen supervision.

I would like to gratefully acknowledge the enthusiastic assistance of **Dr./ Ahmed Fathy El Sherif**, Assistant Professor of Plastic surgery, Faculty of Medicine, Ain Shams University, during this work.

I would like also to convey thanks to Dr./ Wael Sayed Abd El-ghaffar El-gharabawy, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his valuable guidance and advice.

Finally, an honorable mention goes to my family and my husband to whom this work is dedicated.

May Mostafa Darwish Mostafa

List of Contents

Title	Page No.
List of Tables	ii
List of Figures	iii
List of Abbreviations	iv
Introduction	1
AIM OF THE WORK	4
LOCAL ANESTHETICS	5
TUMESCENT ANESTHESIA	43
TUMESCENT LIPOSUCTION	69
PATIENTS AND METHODS	101
RESULTS	109
DISCUSSION	135
Conclusion	157
SUMMARY	159
References	163

List of Tables

Table No. Title	Page No.
Table (1): Anesthetic duration and toxicity	of local anesthetic
isomers	8
Table (2): Characteristics and Clinical corre	elation 13
Table (3): Common Local Anesthetics Dura	ation & Maximum
Doses	
Table (4): Physiochemical properties of loc	al anesthetics 18
Table (5): Pharmacodynamic properties of	local anesthetics18
Table (6): Recommendations for Diagnosis	ng LAST 35
Table (7): Goals of the Tumescent Techniq	ue)45
Table (8): Types of wetting solution	46
Table (9): Actual applications of TA	56
Table (10): Potential applications of TA	57
Table (11): Common Tumescent Analgesia	a Fluid Formulas for
1000 mL of either 0.9% Saline	or Lactated Ringer's
Solution	59
Table (12): Steps for minimizing pain on L.	A injection 61
Table (13): Types of liposuction techniques	
Table (14): Comparison between liposuction	n under general
anesthesia and tumescent anest	hetic technique77
Table (15): Measures to prevent intraoperat	ive hypothermia
during liposuction	93
Table (16): Comparison between the 3 grou	ips as regard the
demographic data (age, gender	, weight, height,
BMI)	
Table (17): Comparison between the 3 grou	
selected for liposuction	110
Table (18): Comparison between the 3 ground	_
preoperative Hb & Hct values.	111
Table (19): Comparison between the 3 ground	ips as regard the
	and RR values111
Table (20): Comparison between the 3 ground	-
	114
Table (21): Comparison between the 3 ground	
amount of fluids infiltrated & a	spirated116

List of Tables (Cont...)

Table No.	. Title	Page No.
Table (22):	Comparison between the 3 groups as regard the	
	intraoperative HR values	117
Table (23):	Comparison between the 3 groups as regard the	
	intraoperative MAP values.	119
Table (24):	Comparison between the 3 groups as regard the	
	intraoperative RR values	121
Table (25):	Comparison between the 3 groups as regard the	
	intraoperative SpO ₂ values	123
Table (26):	Comparison between the 3 groups as regard the	
	recovery time	124
Table (27):	Comparison between the 3 groups as regard	
	postoperative nausea and/or vomiting	125
Table (28):	Comparison between the 3 groups as regard the	
	prostoperative Hb & Hct values.	126
Table (29):	Comparison between the 3 groups as regard the ne	eed
	for postoperative analgesia	126
Table (30):	Comparison between the 3 groups as regard the	
	patient satisfaction.	127
Table (31):	Comparison between the 3 groups as regard the	
	postoperative vital data	128
Table (32):	Comparison between the 3 groups as regard the time	me
	to hospital discharge.	

List of Figures

Fig. No	. Title Page No.	
Figure	(1): local anesthetic structure	6
Figure ((2):Local anesthetic action.	10
Figure	(3): Approximate serum concentrations and systemic	
	influences of lidocaine	35
Figure	(4): Guidelines for management of Local anesthetic	
	systemic toxicity	42
Figure	(5): Example of three-way stopcock system for the	
	administration of tumescent anesthesia	
_	(6): The process of liposuction	
_	(7): The Tumescent technique	
	8): Visual Analogue Pain Scale	108
Figure	(9): Comparison between the groups as regard the areas	
-	selected for doing liposuction	110
Figure	(10): Comparison between the groups as regard the	110
T-1	preoperative HR values.	112
Figure	(11): Comparison between the groups as regard the	110
Eigene e	preoperative MAP values.	112
Figure	(12): Comparison between the groups as regard the	112
Figure	preoperative RR values.	113
rigure	(13): Comparison between the groups as regard the	112
Figure	preoperative SpO ₂ values	113
rigure	(14): Comparison between the groups as regard the Duration of anesthesia	115
Figure	(15): Comparison between the groups as regard the	113
rigure	Duration of surgery.	115
Figure	(16): C omparison between the groups as regard the as	113
riguit	regard the amount of fluids infiltrated or aspirated	116
Figure	(17): Comparison between the groups as regard the	110
- 1841 0	intraoperative HR values.	118
	rr	10

List of Figures (Cont...)

Fig. No.	Title Page No.	
Figure (1	18): Comparison between the 3 groups as regard the	
i	ntraoperative MAP values during the first 150 min of	
t	he operation	120
Figure (1	19): RR measurement in the 3 groups during the first	
1	150 min of the operation.	122
Figure (2	20): SpO ₂ measurement in the 3 groups during the first	
1	150 min of the operation.	124
_	21): Comparison between the groups as regard the	
	recovery time	125
_	22): Comparison between the groups as regard the	
-	patient satisfaction.	127
	23): Comparison between the groups as regard the	100
•	postoperative HR values	129
_	24): Comparison between the groups as regard the	120
	postoperative MAP values.	129
	25): Comparison between the groups as regard the	120
•	postoperative RR values 26): Comparison between the groups as regard the	130
_	postoperative SpO ₂ values	130
	27): Heart rate measurements in the 3 groups during the	150
_	ore, intra and postoperative periods	131
_	28): SpO_2 measurements in the 3 groups during the pre,	131
_	Intra and postoperative periods.	132
	29): MAP measurements in the 3 groups during the	
_	ore, intra and postoperative periods.	132
_	30): RR measurements in the 3 groups during the pre,	
	ntra and postoperative periods.	133
	31): Comparison between the groups as regard the time	
t	o hospital discharge	134

list of Abbreviations

AAGP: Alpha1 acid glycoprotein

ARDS: Acute Respiratory Distress Syndrome **ASA**: American Society of Anesthesiologist

BMI: Body Mass Index

CBC: Complete Blood Count **CNS**: Central Nervous System

CPR: Cardiopulmonary Resuscitation

CV: Cardiovascular CYP: Cytochrome P

DVT: Deep Venous Thrombosis

ECG: Electrocardiogram

EtCO2: End-Tidal Carbon Dioxide

Hb: Hemoglobin **Hct**: Hematocrit

HIV: Human Immune Deficiency Virus

HR: Heart Rate

ILE: Infusion of Lipid Emulsion

IQR: Interquartile Range

IV: Intravenous

IVRA: Intravenous Regional Anesthesia

LA: Local Anesthetic

LAST: Local Anesthetic Systemic Toxicity
MAC: Minimum Alveolar Concentration

MAC: Monitored Anesthesia Care
MAP: Mean Arterial Blood Pressure

Mcg, μg: Microgram

MLAC: Minimum Local Anesthetic Concentrations

NaCL: Sodium Chloride (Saline)

NaHCO₃: Sodium Bicarbonate

NIBP: Non-Invasive Blood Pressure

NS: Normal Saline

NSAIDs: Non-Steroidal Anti-Inflammatory Drugs

List of Abbreviations (Cont...)

PABA: Paraminobenzoic Acid PACU: Post-Anesthetic Care Unit

PONV: Postoperative Nausea And Vomiting

PT: Prothrombin Time

PTT: Partial Thromboplastin Time

SD: Standard Deviation **SpO2**: Oxygen Saturation

TL: Tumescent Liposuction

TLA: Tumescent Local Anesthesia

UGRA: Ultrasound Guided Regional Anesthesia

VAS: Visual Analogue Scale

WAL: Water Assisted Liposuction

INTRODUCTION

Liposuction is the most common cosmetic surgical procedure worldwide. The evolution of liposuction over the past decade has been driven by the desire to achieve better aesthetic outcome, provide safety and allow the procedure to be performed in an outpatient facility (Stephan and Kenkel, *2010*).

Liposuction may be performed under general, regional or local anesthesia. The choice of anesthetic technique depends on both the site and extent of liposuction and also patient preference. Since these procedures are often performed as day care, it is important that there is fast recovery of psychomotor and cognitive functions ensuring early discharge of the patient (Sood et al., 2011).

Historically, liposuction was developed by surgeons who preferred general anesthesia over local anesthesia. As a consequence, the vast majority of liposuction surgeries are still performed with the use of general anesthesia. Other surgeons prefer regional spinal anesthesia due to its safety, low cost and fewer side effects compared to general anesthesia. In both techniques, they infiltrate only relative small amounts of solution with epinephrine to prevent considerable blood loss which is referred to as Semitumescent liposuction (Regatieri and Masquera, 2006).

However massive shifts of fluid out of the vascular space into the areas traumatized by the liposuction cannula in addition to blood loss have been the major risk factors in liposuction by these conventional anesthetic techniques (Sood et al., 2011).

Tumescent liposuction was first introduced in the mid 1980's. This technique eliminated most of the medical and cosmetic problems associated with liposuction that had been encountered with the conventional anesthetic techniques in the earlier years (Habbema, 2009).

The word tumescence means 'to swell'. In this technique, very large volumes (35-55mg/kg) of highly diluted (0.05% to 0.1%) lidocaine with epinephrine 1 mg/L (1:1,000,000) along with additives as sodium bicarbonate are injected into the subcutaneous tissue to expand the tissues, make them firm, swollen and turgid. This creates a plane where suction of fat becomes easier, with less volume of blood loss (Sood et al., *2011*).

The use of Tumescent Local Anesthesia "TLA" as the exclusive method of anesthesia is known as True Tumescent anesthesia. It permits liposuction totally by local anesthesia without the need for general or spinal anesthesia, narcotic analgesia or deep sedation (Klein, 2011).

Several studies have demonstrated the advantages of TLA over other conventional anesthetic techniques in providing minimal blood loss, rapid postoperative recovery, prolonged local anesthesia, improved aesthetic results and decreased both surgical and anesthetic risks. However, strict adherence to basic guidelines and thorough knowledge of the pharmacological mechanism and of the anesthesiologic of the technique essential aspects are to prevent complications related to TLA (Svedman et al., 2006).

AIM OF THE WORK

The aim of this study is to evaluate and compare between conventional anesthetic methods (semi-tumescent anesthetic technique with either general anesthesia or spinal anesthesia) and True Tumescent Local anesthetic technique used for upper and lower abdominal liposuction procedure in order to know the ideal anesthetic technique providing less blood loss, longer postoperative analgesia, rapid postoperative recovery and less both surgical and anesthetic risks.

Chapter (1)

LOCAL ANESTHETICS

Local anesthetics (LAs) are defined as drugs that reversibly block transmission of a nerve impulse, without affecting consciousness. The medical use of local anesthetic agents began some years after isolating cocaine from Peruvian coca in the 1860s. However, due to cocaine's effect of euphoria, subsequent addiction, and cases of mortality from its clinical use, a drive was created to develop less toxic newer amino esters (Ciechanowicz and Patil, 2012).

Procaine synthesis in 1905 was to dominate LA use for the next 40 years, but due to the slow onset of action and allergic potential of amino esters, the hypoallergenic amino amides gradually forced its path with lidocaine appearing in the most which is still commonly used LA (Ciechanowicz and Patil, 2012).

The subsequent evolution of LAs use has made a wide expansion in our knowledge of these drugs and in techniques of their administration, although the agents themselves have changed comparatively less. Modern LAs are safer, but still risks persist. The cornerstone of safe practice with LAs is a thorough understanding of their pharmacological and toxicity profiles, in particular, dose and concentration required, speed of onset and duration of action. Clinicians administering