

LAKE NASSER/NUBIA INLAND NAVIGATION

By

Dalia Ahmed Fouad Mostafa Negm

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in

Irrigation and Hydraulics Engineering

LAKE NASSER/NUBIA INLAND NAVIGATION

By

Dalia Ahmed Fouad Mostafa Negm

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in

Irrigation and Hydraulics Engineering

Under the Supervision of

Manadely	Prof. Dr. Medhat Saad Azi
Head of Irrigation and Hydraulics Department Faculty of Engineering, Cairo University	Director of Nile Research Institute National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

LAKE NASSER/NUBIA INLAND NAVIGATION

By

Dalia Ahmed Fouad Mostafa Negm

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ir

Irrigation and Hydraulics Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Sherif El Manadely Professor of Hydraulics – Head of Irrigation and Hydraul Engineering – Cairo University	Thesis Main Advisor ics Department – Faculty of
Prof. Dr. Mohamed Mokhles Abou- Seida Professor of Hydraulics – Irrigation and Hydraulics Engineering – Cairo University	Internal Examiner Department – Faculty of
Prof. Dr. Fathy Saad El-Gamal Emeritus Professor – Hydraulics Research Institute – Center – Ministry of Water Resource and Irrigation	External Examiner National Water Research

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer:** Dalia Ahmed Fouad Mostafa Negm

Date of Birth: 1/5/1982 Nationality: Egyptian

E-mail: Dolly_negm@yahoo.com

Phone: 01016222712

Address: Sheraton Heliopolis - Cairo

Registration Date: 1/10/2012 Awarding Date: //2017

Degree: Doctor of Philosophy

Department: Irrigation and Hydraulics Engineering

Supervisors: Prof. Dr. Mohamed Sherif El Manadely

Prof. Dr. Medhat Saad Aziz

Director of Nile Research Institute - National Water Research

Center – Ministry of Water Resource and Irrigation

Examiners: Prof. Dr. Mohamed Sherif El Manadely (Thesis main advisor)

Prof. Dr. Mohamed Mokhles Abou- Seida (Internal examiner)
Prof. Dr. Fathy Saad El-Gamal (External examiner)
Emeritus Professor – Hydraulics Research Institute - National
Water Research Center – Ministry of Water Resource and

Irrigation

Title of Thesis: Lake Nasser/Nubia Inland Navigation

Key Words: Lake Nasser/Nubia – Navigable Channel - Lake Morphology –

Delft3D Model

Summary:

Lake Nasser/Nubia (LNN) is considered one of the largest artificial lakes in the world. After construction of High Aswan Dam (HAD), the sediment deposits upstream the dam in LNN, which may cause navigation problems between Egypt and Sudan. The aim of this study is to design a proposed sustainable submerged channel for navigation purposes in LNN, predict the morphological changes for several scenarios that represent the maximum, average, minimum and the critical condition of the inflow to the lake. Also, study the effect of the dredging operation on the study area.

ACKNOWLEDGEMENTS

First of all, I wish to give all my thanks to God for the completion of this work

I would like to express my thanks to my main supervisor **Prof. Dr. Mohamed S. El-Manadely**, Head of Irrigation and Hydraulics Department, Cairo University, for his valuable advice, enthusiastic, guidance and continuous encouragement towards the successful completion of the study.

I wish to express my deepest sense of gratitude and sincerest appreciation to the supervisor **Prof. Dr. Medhat Saad Aziz**, Director of Nile Research Institute, National Water Research Center, for his helpful advice and valuable inspiration, he did not hesitate to provide his time for me and was always encouraging me to complete the study.

Last but not least I wish to express my deepest thanks, gratitude, and appreciation to my devoted mother, my father, my husband, and my son for their love, warm caring, support, and great patience throughout the time of this study. Finally, I want to thank everyone who helped or advised me during my work or even wished me good luck.

DEDICATION

To

My beloved parents
, My lovely Husband Hany & My Son
Mohammed

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
DEDICATION	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	xii
ABSTRACT	xiii
CHAPTER 1 INTRODUCTION	1
1.1 General	
1.2 Problem Definition	
1.3 Main Objectives of the Study	
1.4 Research Plan and Methodology	
1.5 Thesis Outlines	
CHAPTER 2 LITERATURE REVIEW	5
2.1 General	5
2.2 LNN Characteristics	
2.3 Sedimentation in LNN	7
2.4 Volume of Sedimentation in LNN	
2.5 River Navigation	
2.6 Elements of Navigation Waterway Dimensions	
2.7 Overview of Previous Studies	
2.7.1 Previous Studies of Sedimentation in LNN	
2.7.2 Previous Studies of River Navigation	
CHAPTER 3 SITE DESCRIPTION AND DATA COLLECTION	
3.1 Site Description	
3.2 The LNN Data Collection:	
3.2.1 Geometric Data	
3.2.2 Hydrological Data	
3.2.3 Bed Material Samples	
CHAPTER 4 NAVIGATION WATERWAY DESIGN CRITERIA	30
4.1 Introduction	
4.2 Inland Waterway Design Approaches	
4.2.1 Navigation Waterway Depth	
4.2.2 Navigation Waterway Width	
4.2.3 Navigation Waterway Location	
4.3 Dredging of Navigation Waterway	
CHAPTER 5 NUMERICAL MODEL SET-UP	
5.1 The Hydrodynamic Model	
5.1.1 Introduction	
5.1.2 Governing Equations	42

5.1.2.1 Flow Computations	42
5.1.2.2 Morphological Computations	43
5.1.2.2.1 Van Rijn (1993)	
5.1.2.2.2 Suspended Transport	
5.2 Model Preparation	
5.2.1 Construct the Model	45
5.2.1.1 Construct Grid	
5.2.1.2 Model Bathymetry	50
5.2.2 Hydraulic Model	51
5.2.2.1 Hydrodynamic Calibration	51
5.2.2.2 Hydrodynamic Verification	
5.2.3 Morphological Model	74
CHAPTER 6 MORPHOLOGICAL CHANGES IMPACT	89
6.1 Introduction	89
6.2 Prediction of the Navigation Bottlenecks	
6.2.1 Different Scenarios of Study	
6.2.1.1 Maximum, Average and Minimum Flood Discharge Scenarios	
6.2.1.1.1 Model Input Data	
6.2.1.1.2 Model Output Data	95
6.2.1.2 Critical Case Scenario	111
6.2.1.2.1 Model Input Data	111
6.2.1.2.2 Model Output Data	
6.2.1.2.3 The Effect of the Dredging Operation	117
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS	122
7.1 Summary	122
7.2 Conclusions	
7.3 Recommendations	123
REFERENCES	124
APPENDIX I	I-1
APPENDIX II	II.1

LIST OF TABLES

Table 2-1	Useful Life Related Previous Studies on LNN	12
Table 2-2	Vessel Classification and Dimensions	14
Table 3-1	The Cross Sections Locations	17
Table 3-2	The Mean Water Velocity along LNN for the Years 2008 and 2012	23
Table 3-3	The Main Characteristics of Sediment Samples	27
Table 4-1	The Proposed Elements of the Design Ship	31
Table 4-2	The Design Waterway Channel Width	33
Table 4-3	The Dredged Sediment Location and Volume	40
Table 5-1	Modules of Delft3D	
Table 5-2	Sediment Transport Formula	43
Table 5-3	Cross Sections along LNN	52
Table 6-1	Monthly Evaporation Rates	92

LIST OF FIGURES

Figure 1-1	Layout of LNN	1
Figure 1-2	Longitudinal Bed Elevation Profile for LNN	2
Figure 2-1	Map of Nile Basin	6
Figure 2-2	Comparison of Discharge and Sediment Concentration in	the Blue
_	Nile River	
Figure 2-3	Discharge and Sediment Concentration Hydrographs at	Dongola
_	Station (1999-2003)	
Figure 2-4	The Proposed Navigation Route and Dredging Area	15
Figure 3-1	Map of LNN	
Figure 3-2	The Location of the Cross Sections of the LNN	18
Figure 3-3	The Path of the Cross Section in Hypack Software	19
Figure 3-4	Sample of the Bed Survey Data at the Study Area	20
Figure 3-5	Natural Inflow Hydrograph (1990-2012)	21
Figure 3-6	Water Level Hydrograph Upstream HAD (1990-2012)	21
Figure 3-7	Cross Sections Locations Where Velocities Were Measured	22
Figure 3-8	Bray Stoke Type Current Meter	22
Figure 3-9	Sketch Illustrates the Vertical Positions in Cross Section to	
_	Water Velocity	23
Figure 3-10	The Measured Mean Water Velocities along LNN for Years	2008 and
_	2012	25
Figure 3-11	The Used Grab Sediment Sampler	26
Figure 4-1	Water Level Hydrograph Upstream HAD From 2000 to 2012	
Figure 4-2	Two-Way, Two Lane Traffic Elements	
Figure 4-3	Navigation Route Location along LNN	
Figure 4-4	The Navigation Route in LNN	35
Figure 4-5	Cross Sec. (Okasha-AA) at km 477 U/S HAD	36
Figure 4-6	Cross Sec. (Okma-19) at km 466 U/S HAD	37
Figure 4-7	Cross Sec. (North Okma-BB) at km 456 U/S HAD	37
Figure 4-8	Cross Sec. (North Malak El-Nasser-CC) at km 438 U/S HAD	37
Figure 4-9	Cross Sec. (Dowayshat-13) at km 431 U/S HAD	38
Figure 4-10	Cross Sec. (North Dowayshat-HH) at km 422 U/S HAD	
Figure 4-11	Cross Sec. (Atery-10) at km 415.5 U/S HAD	38
Figure 4-12	Cross Sec. (Kagnaraty-6) at km 394 U/S HAD	39
Figure 4-13	Cross Sec. (Madeeq Amaka -28) at km 368 U/S HAD	
Figure 4-14	Cross Sec. (Al-Gandal El-Tany-26) at km 357 U/S HAD	39
Figure 5-1	Flow Chart of Delfet3D Modules	41
Figure 5-2	Flow Chart of the Modeling Strategy	45
Figure 5-3	Curvilinear Grid for LNN	46
Figure 5-4	Aspect Ratio	47
Figure 5-5	Orthogonality	48
Figure 5-6	Smoothness	49
Figure 5-7	LNN Bed Bathymetry for Year 2009	50
Figure 5-8	Manning Roughness Values along LNN	
Figure 5-9	Hydrodynamic Calibration, Computed Water Surface Profile	
-	2008 for Water Level 178.45 m and Corresponding Dischar	
	BCM	_

Figure 5-10	Model Velocity and Measured Velocity at Cross Sec. (Okasha - AA) at
D' 5 11	km 477 U/S HAD
Figure 5-11	Model Velocity and Measured Velocity at Cross Sec. (Okma - 19) at km 466 U/S HAD54
Figure 5-12	Model Velocity and Measured Velocity at Cross Sec. (North Okma -
C	BB) at km 456 U/S HAD54
Figure 5-13	Model Velocity and Measured Velocity at Cross Sec. (Malak El-Nasser
8	- 16) at km 448 U/S HAD55
Figure 5-14	Model Velocity and Measured Velocity at Cross Sec. (North Malak El-
116010 3 1 1	Nasser - CC) at Km 438 U/S HAD55
Figure 5-15	Model Velocity and Measured Velocity at Cross Sec. (Dowayshat - 13)
riguic 3-13	at km 431 U/S HAD56
E 5 16	
Figure 5-16	Model Velocity and Measured Velocity at Cross Sec. (North
D' 5 15	Dowayshat - HH) at km 422 U/S HAD
Figure 5-17	Model Velocity and Measured Velocity at Cross Sec. (Atery - 10) at
	km 415.5 U/S HAD57
Figure 5-18	Model Velocity and Measured Velocity at Cross Sec. (Samana - 8) at
	km 403 U/S HAD57
Figure 5-19	Model Velocity and Measured Velocity at Cross Sec. (Kagnaraty - 6) at
	km 394 U/S HAD58
Figure 5-20	Model Velocity and Measured Velocity at Cross Sec. (North Kagnaraty
C	- WW) at km 384 U/S HAD58
Figure 5-21	Model Velocity and Measured Velocity at Cross Sec. (Morshed - 3) at
118010 0 21	km 378.5 U/S HAD
Figure 5-22	Model Velocity and Measured Velocity at Cross Sec. (Jummay - D) at
1 1guic 3 22	km 372 U/S HAD
Figure 5-23	Model Velocity and Measured Velocity at Cross Sec. (Madeeq Amaka
rigule 3-23	- 28) at km 368 U/S HAD60
Eigung 5 24	
Figure 5-24	Model Velocity and Measured Velocity at Cross Sec. (Amaka - 27) at
F: 5.05	km 364 U/S HAD
Figure 5-25	Model Velocity and Measured Velocity at Cross Sec. (Al-Gandal El-
	Tany - 26) at Km 357 U/S HAD61
Figure 5-26	Model Velocity and Measured Velocity at Cross Sec. (Abdl Qader -
	25) at km 352 U/S HAD61
Figure 5-27	Model Velocity and Measured Velocity at Cross Sec. (Dogheem-24) at
	km 347 U/S HAD62
Figure 5-28	Model Velocity and Measured Velocity at Cross Sec. (Dabaroussa - 22)
	at km 337.5 U/S HAD62
Figure 5-29	Relation between the Measured and the Computed Velocities in Case
C	of Hydrodynamic Calibration63
Figure 5-30	Hydrodynamic Verification, Computed Water Surface Profile at Year
8	2012 for Water Level 174.83 m and Corresponding Discharge 4.26
	BCM
Figure 5-31	Model Velocity and Measured Velocity at Cross Sec. (Okasha - AA) at
1.5010 5 51	km 477 U/S HAD
Figure 5-32	Model Velocity and Measured Velocity at Cross Sec. (Okma - 19) at
1 1guic 3-32	km 466 U/S HAD65
Figure 5 22	Model Velocity and Measured Velocity at Cross Sec. (North Okma -
Figure 5-33	
	BB) at km 456 U/S HAD65

Figure 5-34	Model Velocity and Measured Velocity at Cross Sec. (Malak El-Nasser
	-16) at km 448 U/S HAD66
Figure 5-35	Model Velocity and Measured Velocity at Cross Sec. (North Malak El-
	Nasser-CC) at km 438 U/S HAD66
Figure 5-36	Model Velocity and Measured Velocity at Cross Sec. (Dowayshat - 13)
	at km 431 U/S HAD67
Figure 5-37	Model Velocity and Measured Velocity at Cross Sec. (North
	Dowayshat - HH) at km 422 U/S HAD67
Figure 5-38	Model Velocity and Measured Velocity at Cross Sec. (Atery - 10) at
C	km 415.5 U/S HAD
Figure 5-39	Model Velocity and Measured Velocity at Cross Sec. (Samana - 8) at
8	km 403 U/S HAD
Figure 5-40	Model Velocity and Measured Velocity at Cross Sec. (Kagnaraty - 6) at
1 1guic 5 40	km 394 U/S HAD
Figure 5-41	Model Velocity and Measured Velocity at Cross Sec. (North Kagnaraty
rigule 3-41	
F: 5 40	- WW) at km 384 U/S HAD
Figure 5-42	Model Velocity and Measured Velocity at Cross Sec. (Morshed - 3) at
T: 7.40	km 378.5 U/S HAD70
Figure 5-43	Model Velocity and Measured Velocity at Cross Sec. (Madeeq Amaka
	- 28) at km 368 U/S HAD70
Figure 5-44	Model Velocity and Measured Velocity at Cross Sec. (Amaka - 27) at
	km 364 U/S HAD71
Figure 5-45	Model Velocity and Measured Velocity at Cross Sec. (Al-Gandal El-
	Tany - 26) at km 357 U/S HAD71
Figure 5-46	Model Velocity and Measured Velocity at Cross Sec. (Abdl Qader -
C	25) at km 352 U/S HAD72
Figure 5-47	Model Velocity and Measured Velocity at Cross Sec. (Dogheem - 24)
8	at km 347 U/S HAD
Figure 5-48	Model Velocity and Measured Velocity at Cross Sec. (Dabaroussa - 22)
115010 5 10	at km 337.5 U/S HAD
Figure (5-49)	Relation Between the Measured and the Computed Velocities in Case
11guie (3-49)	of Hydrodynamic Verification
E: 5 50	
Figure 5-50	Morphdynamic Calibration, Predicted Water Surface Profile for Year
T	2012
Figure 5-51	Comparison of Obtained Bed Levels and the Actual Bed Changes
	during the Period (2009 – 2012) at Cross Sec. (Okasha - AA)
Figure 5-52	Comparison of Obtained Bed Levels and the Actual Bed Changes
	during the Period (2009 – 2012) at Cross Sec. (Okma-19)
Figure 5-53	Comparison of Obtained Bed Levels and the Actual Bed Changes
	during the Period (2009 – 2012) at Cross Sec. (North Okma-BB)76
Figure 5-54	Comparison of Obtained Bed Levels and the Actual Bed Changes
C	during the Period (2009 – 2012) at Cross Sec. (Malak El-Nasser-16).76
Figure 5-55	Comparison of Obtained Bed Levels and the Actual Bed Changes
8	during the Period (2009 – 2012) at Cross Sec. (North Malak El-Nasser
	-CC)
Figure 5-56	Comparison of Obtained Bed Levels and the Actual Bed Changes
1 1guic 3-30	during the Period (2009 – 2012) at Cross Sec. (Dowayshat - 13)77
Figure 5 57	
Figure 5-57	Comparison of Obtained Bed Levels and the Actual Bed Changes
	during the Period (2009 – 2012) at Cross Sec. (North Dowayshat - HH)
	78

Figure 5-58	Comparison of Obtained Bed Levels and the Actual Bed Changes during the Period (2009 – 2012) at Cross Sec. (Atery - 10)
Figure 5-59	Comparison of Obtained Bed Levels and the Actual Bed Changes
T' 7 60	during the Period (2009 – 2012) at Cross Sec. (Samana - 8)79
Figure 5-60	Comparison of Obtained Bed Levels and the Actual Bed Changes
F' 5 61	during the Period (2009 – 2012) at Cross Sec. (Kagnaraty-6)
Figure 5-61	Comparison of Obtained Bed Levels and the Actual Bed Changes
	during the Period (2009 –2012) at Cross Sec. (North Kagnaraty - WW)
Figure 5-62	Comparison of Obtained Bed Levels and the Actual Bed Changes
1 18410 5 02	during the Period (2009 – 2012) at Cross Sec. (Morshed - 3)80
Figure 5-63	Comparison of Obtained Bed Levels and the Actual Bed Changes
1 18410 5 05	during the Period (2009 – 2012) at Cross Sec. (Jummay - D)
Figure 5-64	Comparison of Obtained Bed Levels and the Actual Bed Changes
118010 5 0 1	during the Period (2009 – 2012) at Cross Sec. (Madeeq Amaka - 28) 81
Figure 5-65	Comparison of Obtained Bed Levels and the Actual Bed Changes
118410 5 05	during the Period (2009 – 2012) at Cross Sec. (Amaka - 27)
Figure 5-66	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguie 5 00	during the Period (2009 – 2012) at Cross Sec. (Al-Gandal El-Tany -
	26)
Figure 5-67	Comparison of Obtained Bed Levels and the Actual Bed Changes
rigate 5 or	during the Period (2009 – 2012) at Cross Sec. (Abdl Qader - 25)83
Figure 5-68	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 5 00	during the Period (2009 – 2012) at Cross Sec. (Dogheem - 24)83
Figure 5-69	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 3-07	during the Period (2009 – 2012) at Cross Sec. (Dabaroussa - 22)84
Figure 5-70	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 5 70	during the Period (2009 – 2012) at Cross Sec. (Arkeen)84
Figure 5-71	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 5 / i	during the Period (2009 – 2012) at Cross Sec. (Sara)85
Figure 5-72	Comparison of Obtained Bed Levels aAnd the Actual Bed Changes
1 iguic 3-72	during the Period (2009 – 2012) at Cross Sec. (Adendan)85
Figure 5-73	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 3-73	during the Period (2009 – 2012) at Cross Sec. (Abu Simle)
Figure 5-74	Comparison of Obtained Bed Levels and the Actual Bed Changes
1 iguic 3-74	during the Period (2009 – 2012) at Cross Sec. (Tushka)
Figure 5-75	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 5 75	during the Period (2009 – 2012) at Cross Sec. (Abreem)
Figure 5-76	Comparison of Obtained Bed Levels and the Actual Bed Changes
riguic 3-70	during the Period (2009 – 2012) at Cross Sec. (El-Madeek)
Figure 5-77	Comparison of Obtained Longitudinal Section in LNN Deepest Points
riguic 3-77	and the Actual Longitudinal Section during the Years (2009 – 2012).88
Figure 5-78	Relation between the Measured and the Computed Bed Levels in Case
riguic 3-76	of Morphological Model
Figure 6-1	Natural Inflow Hydrograph for the Maximum Consecutive Five Years
rigule 0-1	(1996 to 2001)90
Figure 6-2	Natural Inflow Hydrograph for the Average Consecutive Five Years
riguic 0-2	(1991 to 1996)90
Figure 6-3	Natural Inflow Hydrograph for the Average Consecutive Five Years
	(2001 to 2006)
	, , , , , , , , , , , , , , , , , , , ,

Figure 6-4	Relation between the Water Level and the Storage Capacity in LNN .91
Figure 6-5	Relation between the Water Level and the Water Surface Area in LNN
Figure 6-6	Water Level Hydrograph for the Maximum Flood Discharge Scenario
Figure 6-7	Water Level Hydrograph for the Average Flood Discharge Scenario .94
Figure 6-8	Water Level Hydrograph for the Minimum Flood Discharge Scenario
Figure 6-9	Predicted Bed Levels for Different Scenarios at Cross Sec. (Okasha - AA) at km 477 U/S HAD96
Figure 6-10	Predicted Bed Levels for Different Scenarios at Cross Sec. (Okma - 19) At km 466 U/S HAD96
Figure 6-11	Predicted Bed Levels for Different Scenarios at Cross Sec. (North Okma - BB) at km 456 U/S HAD
Figure 6-12	Predicted Bed Levels for Different Scenarios at Cross Sec. (Malak El-Nasser - 16) at km 448 U/S HAD
Figure 6-13	Predicted Bed Levels for Different Scenarios at Cross Sec. (North Malak El-Nasser - CC) at km 438 U/S HAD98
Figure 6-14	Predicted Bed Levels for Different Scenarios at Cross Sec. (Dowayshat - 13) at km 431 U/S HAD98
Figure 6-15	Predicted Bed Levels for Different Scenarios at Cross Sec. (North Dowayshat - HH) at km 422 U/S HAD99
Figure 6-16	Predicted Bed Levels for Different Scenarios at Cross Sec. (Atery - 10) at km 415.5 U/S HAD
Figure 6-17	Predicted Bed Levels for Different Scenarios at Cross Sec. (Samana - 8) at km 403 U/S HAD100
Figure 6-18	Predicted Bed Levels for Different Scenarios at Cross Sec. (Kagnaraty - 6) at km 394 U/S HAD100
Figure 6-19	Predicted Bed Levels for Different Scenarios at Cross Sec. (North Kagnaraty - WW) at km 384 U/S HAD101
Figure 6-20	Predicted Bed Levels for Different Scenarios at Cross Sec. (Morshed - 3) at kKm 378.5 U/S HAD
Figure 6-21	Predicted Bed Levels for Different Scenarios at Cross Sec. (Jummay - D) at km 372 U/S HAD
Figure 6-22	Predicted Bed Levels for Different Scenarios at Cross Sec. (Madeeq Amaka - 28) at km 368 U/S HAD102
Figure 6-23	Predicted Bed Levels for Different Scenarios at Cross Sec. (Amaka - 27) at km 364 U/S HAD
Figure 6-24	Predicted Bed Levels for Different Scenarios at Cross Sec. (Al-Gandal El-Tany - 26) at km 357 U/S HAD103
Figure 6-25	Predicted Bed Levels for Different Scenarios at Cross Sec. (Abdl Qader - 25) at km 352 U/S HAD
Figure 6-26	Predicted Bed Levels for Different Scenarios at Cross Sec. (Dogheem - 24) at km 347 U/S HAD
Figure 6-27	Cumulative Sediment Deposition and Bed Erosion for Different Scenarios
Figure 6-28	Water Surface Elevation, Water Depth, and Velocity Distribution Corresponding to the Minimum Water Level 174.42 m AMSL in Case of Maximum Flood Discharge Scenario

Figure 6-30	Corresponding to the Minimum Water Level 171.14 m AMSL in Case of Average Flood Discharge Scenario
Figure 6-30	
Figure 6-30	
	Corresponding to the Minimum Water Level 167.77 m AMSL in Case
	of Minimum Flood Discharge Scenario
Figure 6-31	Flood Discharge Hydrograph for the Critical Case Scenario111
Figure 6-32	Water Level Hydrograph for the Critical Case Scenario112
Figure 6-33	Cumulative Sediment Deposition and Bed Erosion for the First, Third
	and Fifth Years of the Critical Case Scenario
Figure 6-34	Water Surface Elevations Corresponding to the Water Levels 162.48,
	148.12, and 147.01 m AMSL for Tthe First, Third and Fifth Years of
	the Critical Case Scenario
Figure 6-35	Water Depths Corresponding to the Minimum Water Levels 162.48,
	148.12, and 147.01 m AMSL for the First, Third and Fifth Years of the
	Critical Case Scenario
Figure 6-36	The Proposed Alternative Designed Navigation Bed Level for Water
	Levels From 160 To 169 m AMSL U/S HAD117
Figure 6-37	Water Surface Elevation Corresponding to the Water Level 160.66 m
	AMSL Before and After Dredging Operation118
	THIRD Before and Three Breaging operation
Figure 6-38	
Figure 6-38	Depth Average Velocity Corresponding to the Passing Discharge 4.59 BCM Before and After Dredging Operation
Figure 6-38 Figure 6-39	Depth Average Velocity Corresponding to the Passing Discharge 4.59
Figure 6-36 Figure 6-37	Levels From 160 To 169 m AMSL U/S HAD11 Water Surface Elevation Corresponding to the Water Level 160.66 r