

Ain Shams University Faculty of Engineering Department of Structural Engineering

Limit State Design in Geotechnical Engineering and its Applications for Deep Foundations in Egypt

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted by

Muhammad Ahmed El Sayed Zayed

B.Sc. in Civil Engineering - Structural Engineering- June 2010 Ain Shams University – Faculty of Engineering

Supervised by

Prof. Yasser M. El- Mossallamy

Professor of Geotechnical Engineering Structural Engineering Department Faculty of Engineering Ain Shams University

Dr. Mohamed Maher Tawfik

Assistant Professor of Geotechnical Engineering Structural Engineering Department Faculty of Engineering Ain Shams University

June 2014

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name : Muhammad Ahmed El Sayed Zayed

Thesis: Limit State Design in Geotechnical Engineering and its

Applications for Deep Foundations in Egypt

Degree : Master of Science in Civil Engineering (Structural)

EXAMINERS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Khalid M. El-Zahaby Professor of Geotechnical Engineering Chairman, Housing and Building National Research Center (HBRC)- Cairo	
Prof. Dr. Fathallah M. El-Nahhas Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Prof. Dr. Yasser M. El-Mossallamy Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

Date: 23 / 6 / 2014

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name : Muhammad Ahmed El Sayed Zayed

Thesis : Limit State Design in Geotechnical Engineering and its

Applications for Deep Foundations in Egypt

Degree : Master of Science in Civil Engineering (Structural)

SUPERVISORS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Yasser M. El-Mossallamy Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Dr. Mohamed Maher Tawfik Assistant Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

Date: 23 / 6 / 2014

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2014

College Board approval

/ / 2014

University Board approval

/ / 2014

CURRICULUM VITAE

Name: Muhammad Ahmed El Sayed Zayed

Date of Birth: 08, March, 1989

Place of Birth: Kingdom of Saudi Arabia

Nationality: Egyptian

University Degree: B.Sc.in Civil Engineering, Faculty of Engineering,

Ain Shams University, 2010.

Current Job: Teaching Assistant at Structural Engineering

Department, Faculty of Engineering, Ain Shams

University

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Eng.)

The work included in this thesis was carried out by the author in the Structural Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Name: Muhammad Ahmed El Sayed Zayed

Signature:

Date:

ACKNOWLEDGMENT

I would like to express my gratitude and respect to my supervisor and advisor, Prof. Yasser El-Mossallamy, for his support and help throughout this research. I am also thankful to my co-supervisor, Dr. Mohamed Maher, for his great efforts and precious advices throughout this research. Working with Prof. El-Mossallamy and Dr. Maher has been a great experience.

I also would like to thank my colleagues and the technical staff of the Soil Mechanics and Foundation Engineering Laboratory, Ain Shams University, for their support.

I deeply thank my mother, father, sister and brother for their continuous support and effort.

ABSTRACT

Muhammad Ahmed El Sayed Zayed- Limit State Design in Geotechnical Engineering and its Applications for Deep Foundations in Egypt- MSc Thesis- Faculty of Engineering-Ain Shams University

Supervisors:

Prof. Dr. Yasser M. El-Mossallamy Dr. Mohamed M. Tawfik

The philosophy of Working Stress Design (WSD) has been widely used for several areas of geotechnical design in Egypt. In accordance, the Egyptian Code of Practice for Soil Mechanics and Foundations Design and Construction (ECP-202, 2001) employs the WSD concept by means of global safety factors. On the other hand, for the design of structural elements, the Egyptian Code of Practice for Design and Construction of Reinforced Concrete Structures (ECP-203, 2007) uses the Limit State Design (LSD) philosophy with the concept of partial safety factors. Design incompatibility normally arises when applying two different design philosophies for the superstructure and its foundations, which may lead to confusions and design misleading. Therefore, the implementation of the LSD concept for geotechnical designs in Egyptian practices has become mandatory.

In this study, the feasibility of applying the LSD concept for geotechnical design of pile foundations in Egypt was examined. It was proposed that gradual transition is highly required to smoothly transfer from the commonly used WSD concept to the LSD concept. Hence, calibrated

partial safety factors were needed to be exploited in the LSD. The

calibration-by-fitting technique was utilized to find out calibrated partial

safety factors that can result in similar design values to that acquired from

the WSD. The proposed calibration methodology was applied on a number

of design methods that are currently in-use in the ECP-202 (2001) for the

design of axially loaded single piles. The major two approaches of the

LSD, i.e., the factored resistance approach and the factored strength

approach, were examined through the calibration process.

Calibrated reduction factors for the pile total, side and base resistances

were obtained from the factored resistance approach, i.e., Load and

Resistance Factor Design (LRFD). Furthermore, calibrated partial safety

factors for the soil shear strength parameters were ascertained from the

factored strength approach. The results of calibrated reduction factors in

this study were found in adequate agreement with that adopted in most

international codes for geotechnical limit state design.

Keywords: *Limit state design, working stress design, global safety factor,*

partial safety factors, piles, calibration

ii

SUMMARY

Muhammad Ahmed El Sayed Zayed- Limit State Design in Geotechnical Engineering and its Applications for Deep Foundations in Egypt- MSc Thesis- Faculty of Engineering-Ain Shams University

Supervisors:

Prof. Dr. Yasser M. El-Mossallamy Dr. Mohamed M. Tawfik

Implementation of limit state design in the geotechnical design in Egypt has become mandatory and essential due to the inconsistency and the confusion that may arise from the incompatible design philosophies for substructures and superstructures in the Egyptian practice. Rational calibration procedures to calibrate reduction factors and partial safety factors were investigated to be used with limit state design of axially loaded single piles. The calibration process was conducted via applying calibration-by-fitting technique aiming to obtain design estimates from limit state design quite close to that obtained from traditional philosophy of working stress design. Both factored resistance approach, i.e., Load and Resistance Factor Design (LRFD), and factored strength approach were utilized throughout the calibration of the reduction factors and the partial safety factors, respectively.

This thesis is organized in five chapters. The contents of each chapter can be summarized as follows:

Chapter (1): This chapter provides a brief description of the problem, objectives of the study and thesis organization.

Chapter (2): The second chapter of this thesis provides main differences between the two design philosophies of working stress design and limit state design regarding the geotechnical engineering design problems. A review of literature relevant to the limit state design in geotechnical engineering is also provided in Chapter (2), and different approaches that can be employed for geotechnical limit state designs are also illustrated.

Chapter (3): This chapter provides a rational procedure to calibrate reduction factors for total pile resistance and pile side and base resistances to be used in the LSD, focusing on application to design axially loaded single piles. The calibration of the resistance reduction factors is achieved via applying calibration-by-fitting technique. In this chapter, reduction factors for pile resistances are calibrated using the factored strength approach, i.e., Load and Resistance Factor Design (LRFD).

Chapter (4): In this chapter, a rational procedure is provided to calibrate partial safety factors for soil strength parameters to be used with the static equation for limit state design of axially loaded single piles. The partial safety factors for soil strength parameter are calibrated via applying calibration-by-fitting technique and using the factored strength approach.

Chapter (5): This chapter presents the summary, conclusions of this research and recommendations for future researches concerning this topic.

TABLE OF CONTENTS

1.	INTRODUCTION	. 1
	1.1.General	2
	1.2.Statement of the Problem.	3
	1.3.Thesis Outline	. 4
2.	LITERATURE REVIEW	6
	2.1.Introduction.	6
	2.2.Uncertainties in Geotechnical Design.	8
	2.3.Geotechnical Engineering Design and Role of Codes of Practice	.10
	2.4.Design Philosophies in Geotechnical Engineering	12
	2.4.1. Working Stress Design (WSD)	14
	2.4.1.1. Definition of Global Safety Factor	14
	2.4.1.2. Historical Development of Working Stress Design	
	Method in Geotechnical Engineering	. 18
	2.4.1.3. Limitation of the Use of Global Safety Factor	.19
	2.4.1.4. Global Safety Factor and Engineering Judgment	23
	2.4.2.Limit State Design (LSD)	24
	2.5.Partial Safety Factors	28
	2.6.Limit State Design using Partial Safety Factors	29
	2.7.Different design approaches for geotechnical ultimate limit state	
	design	31
	2.7.1. Factored Strength Approach	32
	2.7.2. Factored Resistance Approach	34
	2.8.Development of partial safety factors in limit state design	37
	2.9. Calibration of partial safety factors for ultimate limit state design.	.40
	2.10. Calibration-by-fitting technique to calibrate partial resistance	
	factors for limit state design of pile foundations	40

5.	. CALIBRATION OF RESISTANCE REDUCTION FACTORS	
	FOR AXIALLY LOADED SINGLE PILES USING FACTORED	
	RESISTANCE APPROACH	43
	3.1.Introduction.	43
	3.2. Calibration of reduction factors for total pile resistance from static	2
	formula	44
	3.3. Calibration of reduction factors for total pile resistance of large	
	diameter bored piles.	47
	3.4. Calibration of reduction factors for driven piles in cohesionless so	oil
	(Hiley formula design method).	. 49
	3.5. Calibration of reduction factors for pile resistance from static	
	formula considering the vertical component of lateral loads	51
	3.5.1. Wind loads.	. 51
	3.5.2. Earthquake loads	. 55
	3.6. Calibration of reduction factors for pile side and base resistance	
	from SPT-based empirical correlation.	56
	3.6.1. Driven piles	59
	3.6.2. Bored piles	61
	3.7. Calibration of reduction factors for pile side and base resistance	
	from CPT-based empirical correlation	63
	3.7.1. Driven piles.	65
	3.7.2. Bored piles.	68
	3.8. Calibration of reduction factors for pile side and base resistance	
	from PMT-based empirical correlation.	70
	3.9. Calibration of reduction factors for axially loaded single piles on	
	tension loading.	70
	3.10. Pile group in compression loading.	71
	3.11. Summary ad discussion.	71

4.	CALIBRATION OF PARTIAL SAFETY FACTORS FOR
	AXIALLY LOADED SINGLE PILES USING FACTORED
	STRENGTH APROACH. 77
	4.1.Introduction. 77
	4.2. Working stress design for axially loaded single piles using static
	formula design method adopted in ECP-202 (2001)
	4.3.Limit state design of axially loaded single piles using static formula
	of ECP-202 (2001) via factored strength approach
	4.4. Calibration of partial safety factor for soil angle of internal friction
	for piles in cohesionless soil
	4.4.1. Calibration of F_{ϕ} for bored piles in cohesionless soil91
	4.4.2. Calibration of F_{ϕ} for driven piles in cohesionless soil 101
	4.5. Calibration of partial safety factor for soil cohesion for piles in
	cohesive soil
	4.5.1. Calibration of F _c for bored piles in cohesive soil108
	4.5.2. Calibration of F _c for driven piles in cohesive soil
	4.6.Summary and discussions 114
5.	${\bf SUMMARY, CONCLUSIONS~AND~RECOMMENDATIONS}116$
	5.1.Summary
	5.2.Conclusions 117
	5.3.Recommendations for further studies
Al	PPENDIX (A): PARTIAL RESISTANCE REDUCTION FACTORS
FC	OR ULS IN-SITU BASED DESIGN OF AXIALLY LOADED SINGLE
PΙ	LES
Al	PPENDIX (B): ILLUSTRATIVE EXAMPLES FOR THE FACTORED
RI	ESISTANCE APPROACH
Di	E FERENCES 140
1/1	######################################

LIST OF FIGURES

Figure (2.1): Design criteria for capacity verses demand (Modified after
Oliphant, 1993)
Figure (2.2): Components of foundation design and codes of practice role
(After Ovesen, 1981; 1993)
Figure (2.3): Risks of selected natural events and engineering projects
(After Whitman, 1984; Boyd, 1994)
Figure (2.4): Definition of global safety factor for working stress designs
(After Becker, 1996a)15
Figure (2.5): Variation of loads and resistances.
Figure (2.6): Design values for loads and resistances
Figure (2.7): Different load and resistance distributions (after Green, 1989)
Figure (2.8): Three different probabilities of failure for three different
geotechnical problems having the same mean factor of safety (After,
Naghibi, 2010)
Figure (2.9): Ultimate Limit State for foundations design (Modified after
Becker, 1996a)
Figure (2.10): Schematic diagram for the concept of Factored Strength
Approach (After Ovesen and Orr, 1991)
Figure (2.11): Schematic diagram for the concept of Factored Resistance
Approach (After Ovesen and Orr, 1991)
Figure (2.12): Design approaches adopted by different European countries
for piles foundation design (After Bond, A. 2013)
Figure (3.1): Relation between F_R and Q_L/Q_D ratio for different values FS_g
49
Figure (3.2): Relation between F_R and Q_W/Q_L ratio at Q_L/Q_D ratio of 0.30,
for different values FS _g

Figure (3.3): Calibrated F_{Rs} and F_{Rb} with respect to the skin friction share
for SPT-based driven piles
Figure (3.4): Variation of Q_L/Q_D with F_{Rb} and F_{Rs} of the intersection point
for SPT-based driven piles 62
Figure (3.5): Calibrated F_{Rs} and F_{Rb} with respect to the skin friction share
for SPT-based bored piles
Figure (3.6): Variation of Q_L/Q_D with F_{Rb} and F_{Rs} of the intersection point
for SPT-based bored piles 64
Figure (3.7): Calibrated F_{Rs} and F_{Rb} with respect to the skin friction share
for CPT-based driven piles
Figure (3.8): Variation of Q_L/Q_D with F_{Rb} and F_{Rs} of the intersection point
for CPT-based driven piles
Figure (3.9): Calibrated F_{Rs} and F_{Rb} with respect to the skin friction share
for CPT-based bored piles
Figure (3.10): Variation of Q_L/Q_D with F_{Rb} and F_{Rs} of the intersection point
for CPT-based bored piles
Figure (4.1): Definition of P _o and P _b
Figure (4.2): Relationship between F_ϕ and ϕ for bored piles at Q_L/Q_D ratio
of 0.1 for different values of L_p/d_p and K_{HC} 92
Figure (4.3): Relationship between F_ϕ and ϕ for bored piles at Q_L/Q_D ratio
of 0.3 for different values of L_p/d_p and K_{HC}
Figure (4.4): Relationship between F_ϕ and ϕ for bored piles at Q_L/Q_D ratio
of 0.5 for different values of L_p/d_p and K_{HC}
Figure (4.5): Upper and lower boundaries for the values of F_{ϕ} for bored
piles at different K_{HC} , Q_L/Q_D and L_p/d_p values
Figure (4.6): Variations of F_{ϕ} with L_p/d_p for K_{HC} and Q_L/Q_D equals 0.5 and
0.3, respectively, at different values of φ
Figure (4.7): Variations of F_{ϕ} with L_p/d_p for K_{HC} and Q_L/Q_D equals 1.5 and
0.3, respectively, at different values of φ