



# STUDYING ECONOMIC IMPACT OF INVESTMENT IN CAIRO METRO TERMINAL STATIONS

By

Mahmoud Abd El Rahman Farag Abd El Kareem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

# STUDYING ECONOMIC IMPACT OF INVESTMENT IN CAIRO METRO TERMINAL STATIONS

By

## Mahmoud Abd El Rahman Farag Abd El Kareem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

#### STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Moheeb El Saeed Ibrahim Prof. Dr. Hisham Maged Osman

Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering, Cairo University

Associate Professor Structural Engineering Department Faculty of Engineering, Cairo University

Dr. Ahmed Abdel Moamen Khalil

Assistant Professor Structural Engineering Department Faculty of Engineering, Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

# STUDYING ECONOMIC IMPACT OF INVESTMENT IN CAIRO METRO TERMINAL STATIONS

By

## Mahmoud Abd El Rahman Farag Abd El Kareem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

### STRUCTURAL ENGINEERING

| Approved by the Examining Committee: |  |
|--------------------------------------|--|
| Prof. Dr. Moheeb El Saeed Ibrahim    |  |
| Prof. Dr. Hisham Maged Osman         |  |
| Prof. Dr. Mohamed Mahdy Marzouk      |  |
| Prof. Dr. Karim M. El-Dash           |  |

Prof. Dr. Karim M. El-Dash Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering, Banha University **Engineer's Name:** Mahmoud Abd El Rahman Farag

**Date of Birth:** 26 /10 /1987 **Nationality:** EGYPTIAN

E-mail: Eng.mahmoud\_87@yahoo.com

**Phone:** + 20-01001867679

**Address:** 9th street- 3th district- 6th October

**Registration Date:** 01/03/2011 **Awarding Date:** ..../..... **Degree:** Master of Science

**Department:** Structure Engineering Department

**Supervisors:** 

Prof. Dr. Moheeb El Saeed Ibrahim

Dr. Hisham Maged Osman

Dr. Ahmed Abdel Moamen Khalil

**Examiners:** 

Prof. Karim M. El-Dash (External examiner)
Prof. Mohamed Mahdy Marzouk (Internal examiner)

Porf. Dr. Moheeb El Saeed Ibrahim.

Dr. Hisham Maged Osman

### **Title of Thesis:**

# Studying Economic Impact of Investment in Cairo Metro Terminal Stations

#### **Key Words:**

Investing impact in metro stations; Stations design; Artificial neural network (ANN); Life cycle cost analysis (LCCA); Cairo metro terminals stations.

#### **Summary:**

Metro transportation systems play a pivotal role in enhancing the productivity and quality of life in Egypt. It is considered the back bone of transportation in Cairo. However, although large numbers of passengers whose uses it daily, it has not the adequate attention specially stations. The current situation for Cairo metro stations, especially terminal stations and its surrounding areas have a bad effect on environment and bad financial revenue to the Metro. Thus this research proposed a methodology that helps to apply multilateral investments in metro terminal stations to gain extra profits and also decrease the bad environmental effect in terminal stations and its surrounding areas. Hence, Helwan-Metro station has been considered as a case study to show the possibility of applying various investments in the stations. Using of Artificial Neural Network technique (ANN) using Just NN software to calculate the initial cost and the Net Present Value (NPV) to achieve the investment feasibility for the project. Also, applying BOT as a method to fund the project.



## Acknowledgments

First and foremost, I thank almighty God, for blessing me with the completion of this thesis.

Words can never express my most sincere thanks and gratitude to everyone whose advice and support has helped me throughout this endeavor especially my supervisor **Prof. Moheeb El Saeed Ibrahim** and **Dr. Ahmed Abdel Moamen Khalil**, for their continuous encouragement, efforts, and times throughout the course of the work.

I would like to thank **Prof. Mohamed Mahdy Marzouk**, for his invaluable guidance. His constant support and motivation were key factors in helping me to overcome any encountered problem and guiding me on track for all time.

Last but no means least, I deeply thank my **Father, Mother, Brother, Wife** and my colleague *Shaimaa Azab* for their supports and encouragement to pursue this degree. Without their supports and sacrifices this work would not have been accomplished.

## **Table of Contents**

| ACKNOV  | WLEDGMENTS                                            | I   |
|---------|-------------------------------------------------------|-----|
| TABLE ( | OF CONTENTS                                           | I   |
| LIST OF | TABLES                                                | V   |
| LIST OF | FIGURES                                               | VI  |
| ABSTRA  | CT                                                    | VII |
| СНАРТЕ  | CR 1: INTRODUCTION                                    | 1   |
| 1.1.    | General                                               | 1   |
| 1.2.    | Problem Statement                                     | 1   |
| 1.3.    | Research Objectives                                   | 2   |
| 1.4.    | Research Methodology                                  | 2   |
| 1.5.    | Organization of the thesis                            | 3   |
| СНАРТЕ  | CR 2 : LITERATURE REVIEW                              | 5   |
| 2.1.    | General                                               | 5   |
| 2.2.    | Station Design                                        | 5   |
| 2.2.1.  | Types of stations design                              | 6   |
| 2.2.1   | .1. Side Platform Station                             | 6   |
| 2.2.1   | .2. Island Platform Station                           | 6   |
| 2.2.1   | .3. Elevated Station with Side Platforms              | 7   |
| 2.2.1   | .4. Elevated Station with Ticket Hall below Platforms | 7   |
| 2.3.    | Metro Stations                                        | 8   |
| 2.4.    | Commercial center on metro stations                   | 10  |
| 2.4.1.  | Zoning regulations                                    | 10  |
| 2.4.2.  | Density of Population                                 | 11  |
| 2.4.3.  | Floor Area Ratio (FAR)                                | 11  |
| 2.4.4.  | Building Coverage Ratio (BCR)                         | 11  |
| 2.4.5.  | Building height                                       | 12  |
| 2.5.    | Value capture                                         | 12  |
| 2.5.1.  | Land Value Tax (LVT)                                  | 13  |
| 2.5.2.  | Tax-Increment Financing (TIF)                         | 13  |
| 2.5.3.  | Special Assessment (SA)                               | 13  |

| 2.5.4. | Transportation Utility Fees (TUF)                     | 14 |
|--------|-------------------------------------------------------|----|
| 2.5.5. | Development Impact Fees (DIF)                         | 14 |
| 2.5.6. | Negotiated Exactions                                  | 15 |
| 2.5.7. | Joint Development (JD)                                | 15 |
| 2.5.8. | Air Rights                                            | 15 |
| 2.6.   | Land use in Transportation                            | 16 |
| 2.7.   | Investment in Metro Stations                          | 16 |
| 2.8.   | Life Cycle Cost Analysis                              | 17 |
| 2.9.   | Environmental Impacts of Metro stations               | 18 |
| 2.10.  | Summary                                               | 18 |
| СНАРТЕ | R 3 : CAIRO METRO NETWORK                             | 19 |
| 3.1.   | General                                               | 19 |
| 3.2.   | Cairo Metro First line                                | 20 |
| 3.3.   | Cairo Metro Second line                               | 21 |
| 3.4.   | Cairo Metro Third Line                                | 24 |
| 3.4.1. | First stage of the third line                         | 26 |
| 3.4.2. | Seconed stage of the third line                       | 26 |
| 3.4.3. | Third stage of the third line_                        | 27 |
| 3.4.4. | Fourth stage of the third line_                       | 28 |
| 3.5.   | Future plans of the fourth line                       | 30 |
| 3.6.   | Terminals Description Of Lines 1&2                    | 30 |
| 3.6.1. | Helwan station                                        | 30 |
| 3.6.2. | New El Marg station                                   | 31 |
| 3.6.3. | Shobra Al Khaima station                              | 32 |
| 3.6.4. | Al Munib station                                      | 33 |
| 3.7.   | State of Metro Passengers Numbers for the three lines | 34 |
| 3.8.   | Summary                                               | 36 |
| СНАРТЕ | R 4 : MODELING TECHNIQUES                             | 37 |
| 4.1.   | General                                               | 37 |
| 4.2.   | Artificial Intelligence                               | 37 |
| 4.3.   | Artificial Neural Network                             | 37 |
| 4.4.   | Fundmentals of Nueral Network                         | 38 |
| 4.4.1. | Processing Units                                      | 38 |

| 4.4.2. | Connections                                          | 38 |
|--------|------------------------------------------------------|----|
| 4.4.3. | Computation                                          | 39 |
| 4.4.4. | Training                                             | 39 |
| 4.5.   | A Taxonomy of Neural Networks                        | 40 |
| 4.5.1. | Supervised Learning                                  | 40 |
| 4.5.1  | .1. Feed forward Networks                            | 40 |
| 4.5.1  | .2. Recurrent Neural Networks                        | 41 |
| 4.5.2. | Semi-supervised learning                             | 41 |
| 4.5.3. | Un supervised Learning                               | 42 |
| 4.5.4. | Hybrid Networks                                      | 42 |
| 4.5.5. | Dynamic Networks                                     | 43 |
| 4.6.   | The Back propagation Algorithm                       | 43 |
| 4.7.   | Artificial Neural Network Applications               | 46 |
| 4.7.1. | Artificial Neural Network in Civil Engineering       | 46 |
| 4.7.2. | Artificial Neural Network in Construction Management | 46 |
| 4.8.   | Public private partnership (PPP) funding             | 47 |
| 4.8.1. | Public private partnership (PPP) delivary models     | 47 |
| 4.8.1  | .1. Service Contracts                                | 47 |
| 4.8.1  | 2. Management Contracts                              | 48 |
| 4.8.1  | .3. Lease Contracts                                  | 48 |
| 4.8.1  | .4. Concessions                                      | 48 |
| 4.8.1  | .5. Build Operate Transfer (BOT)                     | 49 |
| 4.8.2. | Benefits and Challenges of PPP                       | 50 |
| 4.8.3. | The PPP Life-Cycle                                   | 51 |
| 4.6.   | Summary                                              | 52 |
| СНАРТЕ | R 5 : CASE STUDY                                     | 53 |
| 5.1.   | General                                              | 53 |
| 5.2.   | Project Information                                  | 53 |
| 5.3.   | Analysis                                             | 55 |
| 5.3.1. | Terminal Location                                    | 55 |
| 5.3.2. | Survay Analysis                                      |    |
| 5.3.3. | Cost Analysis using ANN                              |    |
| 5.3.3  | •                                                    |    |
| 5.3.3  | .2. Identifying Input Variables                      | 66 |
| 5.3.3  | .3. Data Collection and Encoding                     | 66 |

| 5.3.3.  | 4. ANN Structure Design                         | . 67 |
|---------|-------------------------------------------------|------|
| 5.3.3.  | 5. Training & Validation by ANN                 | . 68 |
| 5.3.3.  | 6. Cost Calculation by ANN                      | . 70 |
| 5.3.4.  | Life Cycle Cost Analysis                        | . 70 |
| 5.4.    | Method of Funding                               | 72   |
| 5.5.    | Summary                                         | 72   |
| CHAPTE  | R 6 : SUMMARY AND CONCLUSION                    | 74   |
| 6.1.    | Research Summary                                | 74   |
| 6.2.    | Research Conclusion                             | 74   |
| 6.2.    | Research Contributions                          | 75   |
| 6.4.    | Recommendations for future researches           | 76   |
| REFERE  | NCES                                            | 77   |
| APPENDI | X A: THE QUESTIONNAIRE & HELWAN STATION BORDERS | 82   |
| APPENDI | X B: CAIRO METRO HISTORY                        | 92   |
| APPENDI | X C: WORLD STATIONS DATA USED IN ANN PROGRAM    | 95   |
| APPENDI | X D: UNDERGROUND METRO ALL OVER THE WORLD 1     | 102  |

## **List of Tables**

| CHAPTER 3                                                                           |
|-------------------------------------------------------------------------------------|
| Table 3.1: Numbers of passengers through year 2013                                  |
| CHAPTER 5                                                                           |
| Table 5.1: Passenger's numbers of Helwan station from 2004 to 201355                |
| Table 5.2: Passenger's ages & gender which go to Helwan station during holiday59    |
| Table 5.3: Passenger's ages & gender which go to Helwan station during academic     |
| year                                                                                |
| Table 5.4: Passenger's destinations after passing Helwan station from 14 to 17 pm60 |
| Table 5.5: Numbers of passengers that ride Metro from Helwan station during         |
| week                                                                                |
| Table 5.6: Shopping from Helwan square                                              |
| Table 5.7: Project parameters                                                       |
| Table 5.8: Comparison between BOT, BOOT and PPP73                                   |
|                                                                                     |
| Appendix A                                                                          |
| Table A.1: The questionnaire                                                        |

# **List of Figures**

| CHAPTER 2                                                          |    |
|--------------------------------------------------------------------|----|
| Figure 1.1: current situation around metro stations                | 2  |
|                                                                    |    |
| CHAPTER 2                                                          |    |
| Figure 2.1: Typical Design of Side Platform Station                | 6  |
| Figure 2.2: Typical Design of Island Platform Station              | 7  |
| Figure 2.3: Typical Design of Elevated Station with Side Platforms | 7  |
| Figure 2.4: Elevated Station with Ticket Hall below Platforms      | 8  |
| Figure 2.5: Underground Station of a Metro System                  | 9  |
| Figure 2.6: At-Grade Station of a Metro System                     | 9  |
| Figure 2.7: Elevated (Viaduct) Station of a Metro System           | 10 |
| Figure 2.8: Calculations of FAR & BCR                              | 12 |
| CHAPTER 3                                                          |    |
| Figure 3.1: Greater Cairo Underground railway network              | 19 |
| Figure 3.2: Underground metro of the first line                    | 21 |
| Figure 3.3: A longitudinal section for the second line             | 23 |
| Figure 3.4: Underground metro of the second line                   | 24 |
| Figure 3.5: Third line planning.                                   | 25 |
| Figure 3.6: First stage of the third line.                         | 26 |
| Figure 3.7: Second stage of the third line                         | 27 |
| Figure 3.8: The third stage of the third line.                     | 28 |
| Figure 3.9: Fourth stage of the third line                         | 29 |
| Figure 3.10: Fourth line planning.                                 | 30 |
| Figure 3.11: Helwan station.                                       | 31 |
| Figure 3.12: New El Marg station                                   | 32 |

## **CHAPTER 4**

Figure 4.1: Perceptron. (a) Single layer perceptron; (b) multi-layer perceptron.......41

## **CHAPTER 5**

| Figure 5.1: Front of station gate                                            | 53      |
|------------------------------------------------------------------------------|---------|
| Figure 5.2: Station square & surrounding area                                | 54      |
| Figure 5.3: Streets around station                                           | 54      |
| Figure 5.4: Numbers of Helwan station passengers per hour                    | 55      |
| Figure 5.5: Proposed metro path                                              | 56      |
| Figure 5.6: Distance between Helwan & Ein Helwan stations                    | 57      |
| Figure 5.7: Passenger's ages & gender which go to Helwan station during ho   | liday62 |
| Figure 5.8: Passenger's ages & gender which go to Helwan station during ac   | ademic  |
| year                                                                         | 63      |
| Figure 5.9: Passenger's destinations after passing Helwan station from 14 pm | 1 to 17 |
| pm                                                                           | 63      |
| Figure 5.10: Numbers of passengers that ride Metro from Helwan station dur   | _       |
| week                                                                         |         |
| Figure 5.11: Shopping from Helwan square during Holidays                     |         |
| Figure 5.12: Shopping from Helwan square during Academic year                | 65      |
| Figure 5.13: Steps for Applying Artificial Neural Networks                   | 66      |
| Figure 5.14: Historical data within Just NN environment.                     |         |
| Figure 5.15: Relations between parameters.                                   | 69      |
| Figure 5.16: Importance of parameters                                        | 69      |
| Figure 5.17: Error of the process                                            | 70      |
| Appendix A                                                                   |         |
| Figure A.1: Helwan Station Borders.                                          | 84      |
| Appendix B                                                                   |         |
| Figure B.1: Cairo Metro map on 2006.                                         | 94      |
| Appendix D                                                                   |         |
| Figure D.1: Madrid Metro.                                                    | 102     |
| Figure D.2: London Metro                                                     | 102     |
| Figure D.3: Paris Metro                                                      | 103     |
| Figure D.4: Berlin Metro.                                                    | 103     |
| Figure D.5: Tokyo Metro                                                      | 104     |
| Figure D.6: Seoul Metro.                                                     | 104     |

## **Abstract**

Metro transportation systems play a pivotal role in enhancing the productivity and quality of life in Egypt. It is considered the back bone of transportation in Cairo. However, although large number of passengers who use it daily. Cairo metro has not had the adequate attention specially stations which considered the way to success of the metro network. The current situation for Cairo metro stations, especially terminal stations and its surrounding areas have a bad financial revenue and bad effect on environment where it is a major factor in increase of noise, traffic jam and air pollution in addition to spread of street vendors. Also, collecting of random parking around these terminal stations. Thus, this research proposes a methodology that helps to apply multilateral investments in metro terminal stations to gain extra profits and decrease the bad environmental effect in terminal stations and its surrounding areas. Hence, Helwan-Metro station in line 1 has been considered as a case study. The plan of this research is set by considering the history of the station's area and number of passengers through last ten years. In addition, the detailing number of passengers at peak time, their ages, and their destinations have been considered by making a field survey and questionnaire. After collecting data and finishing the survey questionnaire, the primary studies were done to modify and introduce a new proposal for Helwan-Metro station. The initial cost of the proposed project is predicted using Artificial Neural Network technique using Just NN software through six steps namely: 1) Determining Output Variables; 2) Identifying input Variables; 3) Data Collection and Encoding; 4) ANN Structure Design; 5) Training & Validation Using ANN and 6) Cost Calculation. The investment feasibility achieved by consideration of Life Cycle Cost analysis and calculation of Net Present Value (NPV) of the proposed project. The funding method is determined by applying the Build Operate Transfer (BOT) for construction of the project which shown that BOT is acceptable for both public and private authorities.

The findings of this research reveal that investment in Cairo Metro stations must be improved to gain extra profits for metro and contributes in improvement the services for passengers. Also, it helps in decreasing the bad environmental impacts. Thus, increase the positive environmental effects in metro stations and its surrounding areas. It also encourages the investors to invest in Metro stations because of the high revenues of this kind of investment as explained in the case study which shows that the NPV and funding method of the proposed project is profitable.

## CHAPTER 1

## INTRODUCTION

## 1.1. General

Cairo metro is considered one of the most important transportation facilities for its speed, safety and comfort. Also, the metro helps in solving the problem of crowding in cities. It has a positive environmental and economic impacts. For the environmental aspect, it reduces the oil consumption, reduces the emissions that result from the fuel consumption, and decreases the negative environmental impacts. For the economic aspect, it is considered to be the cheapest facility. Thus, Cairo metro becomes the back bone of transportation in Cairo. While it limits on transporting the passengers only. This current situation leads to decreasing the margin profit for the metro company. Where, the price of the ticket does not represent any profit nowadays, especially with inability of raising the ticket price due to the bad economic conditions. This produces a significant difficulty in providing appropriate services for passengers. All these problems require to develop new ways to get extra revenues by multiple investments, which commensurate with the metro. Investment in metro stations is considered to be an optimal way to gain extra profit especially with sloping down of stations level. Phenomenon of spreading the street vendors around most of metro stations leads to spreading of chaos and insecurity of passengers. Therefore, investments in metro stations should be implemented to increase the revenue of metro and decrease the negative environmental effect.

### 1.2. Problem Statement

Financial revenue from operation of Greater Cairo Metro Network decreased in the recent years and Cairo Metro does not cover its operation cost. This resulting from the authority which cannot increase the ticket price due to social considerations and high cost of components, which requires for maintenance. Thus, it must be thought for other ways to increase the revenue. One of the most important ways is re-planning of terminal stations, where they have been designed a long time ago according to special circumstances. As the population was not as it is nowadays and there were not any overcrowdings and the phenomenon of street vendors hadn't been spread yet. While, nowadays there is an increase in population and unemployment, which leads to increasing the private facilities transportations as microbuses. These facilities perform a random terminal stations to collect people in all places around stations and the surrounding streets that lead to traffic jam, also closing many streets, which founded from several decades and uncorrectable. Also, unemployment leads to presence of a lot numbers of vendors inside metro cars and around metro stations. Because of their huge numbers, most areas around station have been closed as shown in figure (1-1). All of this also lead to bad environmental effect like noise pollution that reach to 85 dB at rush hours and air pollution emissions such CO2, NO2, and SO2 [1]. This problem must be resolved with technical solutions. There are no studies or researches that take this