

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

BOND BEHAVIOR OF CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED FIBER REINFORCED LAMINATES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING (STRUCTURES)

by

REHAM MOHAMMED GALAL IBRAHIM ELTAHAWY

Supervised by

Prof. Amr Ali AbdelRahman

Professor of Reinforced Concrete Structures Ain Shams University

Prof. Tarek Kamal Hassan

Professor of Reinforced Concrete Structures Ain Shams University

Cairo - 2014

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

BOND BEHAVIOR OF CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED FIBER REINFORCED LAMINATES

By REHAM MOHAMMED GALAL IBRAHIM ELTAHAWY

M.Sc. (2008) – B.Sc. (2002) with honor Civil Engineering – Structural Department Faculty of Engineering – Ain Shams University

EXAMINERS COMMITTEE

	Signature
Prof. Amir Fam	
Professor of Reinforced Concrete Structures	
Professor and Chair of Undergraduate Studies	•••••
Queen's University – Canada	
Prof. Ezz Eldin Yazeed Sayed	
Professor of Steel Structures	•••••
Faculty of Engineering – Ain Shams University	
Prof. Amr Ali AbdelRahman	
Professor of Reinforced Concrete Structures	•••••
Faculty of Engineering – Ain Shams University	
Prof. Tarek Kamal Hassan	
Professor of Reinforced Concrete Structures	•••••
Faculty of Engineering – Ain Shams University	

Date: 09 December 2014

STATEMENT

This thesis is submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering (Structures), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Date : 09 December 2014

Name : Reham Mohammed Galal Ibrahim Eltahawy

Signature :

AUTHOR

Name : Reham Mohammed Galal Ibrahim Eltahawy

Date of birth : 2 November 1979

Place of birth : Cairo, Egypt

Academic Degree : M.Sc. in Civil Engineering

Major : Structural Engineering

University : Ain Shams University

Date : March 2008

Academic Degree: B.Sc. in Civil Engineering

Major : Structural Engineering

University : Ain Shams University

Date : June 2002

Grade : Distinction with Honor

Current job : Teaching and Research Assistant

Faculty of Engineering — Ain Shams University

ACKNOWLEDGEMENT

First of all, thanks to **GOD** and May His peace and blessings be upon all his prophets for granting me the chance and the ability to complete this study successfully.

I would like to express my deepest gratitude to **Prof.** Amr AbdelRahman. Professor of Reinforced Concrete Structures. Faculty of Engineering, Ain Shams University, for his genuine valuable advice. comments. support, sincere and deep encouragement through all phases of work that helped me to finish this study in appropriate shape. I'm also extremely thankful to **Prof.** Hassan, Professor of Reinforced Concrete Tarek Structures. Faculty of Engineering, Ain Shams University, for his guidance and valuable suggestions.

I would like to take the opportunity to thank all **Reinforced Concrete Staff** for their support and encouragement. Special thanks to the **Teaching Assistants** for their help by giving me fewer work responsibilities to concentrate and finish this study.

I would like to thank my sister, **Walaa Eltahawy**, her support and encouragement in the days prior to submitting this study helped me in the accomplishment of this work.

Finally, I am particularly grateful to my mother, **Dalal Amer**, for helping and assisting me in all the stages of this work. Without her sleepless nights and extreme care, this study would never have been possible.

The work is dedicated to her, my mother, to whom I owe so much.

BOND BEHAVIOR OF CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED FIBER REINFORCED LAMINATES

SUMMARY

The research program presented in this thesis is of multi phases to evaluate and characterize the bond and load transfer mechanisms between FRP materials and concrete and to investigate the influence of various parameters on the debonding process. A comprehensive investigation is conducted in four phases.

first phase involves the collection and compiling experimental data to create wide spectrum databases for simply supported RC beams strengthened with FRP laminates experienced either plate end (PE) or intermediate crack (IC) debonding failure. Two databases are constructed: one for beams failed in PE debonding, and another database for beams exhibited IC debonding. The second phase introduces the existing design methodologies used for the evaluation of the FRP bond strength: of formulas, mechanics materials empirical models. fracture mechanics approaches, in addition to design formulas in various codes and design guidelines. The third phase comprises a non-linear element (FE) analysis to predict the debonding failure loads/strains of the data gathered from the literature. The FE analysis is employed to set up a clear methodology for modeling FRP-strengthened beams; especially the FRP-concrete The fourth phase presents a parametric study of 38 simply supported RC beams strengthened with externally bonded FRP sheets with variable parameters and analyzed using the non-linear FE program. The study aims to investigate the influence of key parameters believed to affect the behavior of FRP-strengthened concrete structures.

Finally, a comparison is held among the experimental data, the existing design methodologies, the design formulas in various design guidelines, and the non-linear FE analysis. The assessment aims to highlight the most efficient models in predicting debonding failure load. Based on statistical the analysis outcomes. American design guideline (ACI Committee 440-2008) is considered the least scattered and the most efficient model for predicting debonding failure loads, but with un-conservative nature.

The design recommendations and guidelines are proposed based on the results of this comparison and the parametric study that is conducted in light of the non-linear finite element results. According to the research findings, the strain level, at which debonding may occur, has been identified through a proposed analytical expression. The model is introduced to predict the behavior of RC beams strengthened in flexure with externally bonded FRP laminates and verified with the gathered databases.

Keywords: RC beams; FRP composites; Debonding; Test database; Finite element method; Analytical models; Statistical analysis; Strengthening design.

To fulfill the previously mentioned objectives, this research is divided into the following chapters:

- Chapter (1) is an introduction to this study. This chapter discusses the importance of the research and highlights the scope of the research program.
- Chapter (2) illustrates the use of the advanced composite materials to strengthen concrete structures through a literature survey and highlights the commonly used retrofitting materials, properties, and application procedures. A review of the existing analytical models available in the literature and various design guidelines to predict PE and IC debonding

- failure loads is included. The contents are placed within the framework of the knowledge and the aim of this thesis.
- Chapter (3) presents the compiled databases. This part of the thesis proposes a PE debonding database, an IC debonding database, the selection criteria, and a brief on the experimental studies enclosed in each database.
- Chapter (4) introduces a description of the non-linear FE program utilized to simulate the RC beams strengthened in flexure with externally bonded FRP laminates and contained in the collected databases. The FE description includes types of material definition. elements. contacts characterization, solution strategy, failure criteria, loading, and boundary conditions. This section of the research covers the FE results obtained from the program and a discussion of the results.
- Chapter (5) provides an assessment of the existing PE debonding analytical models as well as different design guidelines with the test data included in the gathered PE database. This part of the study highlights the significant results of a comprehensive statistical comparison between the PE experimental data, the current PE design methodologies, and the non-linear FE results of the beams involved in the PE database.
- Chapter (6) presents an assessment of the available IC debonding analytical models and design guidelines with the test results enclosed in the assembled IC database. This section of the dissertation summarizes the primary outcomes of a detailed statistical study held among the IC experimental data, the existing IC design methodologies, and the non-linear FE results of the beams in the IC database.

- Chapter (7) includes a parametric study conducted on a using constructed database analyzed the non-linear FE program. This chapter investigates the influence of different parameters on the bond strength of retrofitted RC beams and introduces a formula for the prediction of debonding failure formulated loads. The results are into clear design considerations for the application of externally bonded FRP in flexural strengthening to be incorporated in the Egyptian Code of Practice.
- Chapter (8) highlights the general conclusions of the study alongside with recommendations for future research and developments in this subject.

TABLE OF CONTENTS

TABLE OF CONTENTS	I
LIST OF FIGURES	VII
LIST OF TABLES	XIX
LIST OF EQUATIONS	XXIII
NOTATIONS	XXXI
ABSTRACT	XLVII
CHAPTER 1: INTRODUCTION	1 -
1.1 General	1 -
1.2 Scope of the Research	3 -
1.3 Thesis Outline	4 -
CHAPTER 2: LITERATURE REVIEW	7 -
2.1 General	7 -
2.2 FRP Repair and/or Strengthening Systems	8 -
2.2.1 FRP Types	
2.2.1.1 Fiber Materials	
2.2.1.2 Fiber Forms	11 -
2.2.2 Adhesives	13 -
2.2.2.1 Polyester Resin	13 -
2.2.2.2 Vinyl ester Resin	14 -
2.2.2.3 Epoxy Resin	14 -
2.3 History of FRP Strengthening Technique	15 -
2.4 FRP Failure Mechanisms	16 -
2.5 Methods of Flexural Strengthening using FRP	18 -
2.5.1 Unstressed FRP Plates	18 -
2.5.2 End Anchorage for Unstressed FRP Plates	20 -
2.5.3 Prestressed FRP Plates	21 -
2.5.4 Near Surface Mounting Strengthening	22 -
2.6 Bond Behavior of FRP-Concrete Interface	25 -
2.6.1 Shear Stress-Slip Models	26 -
2.6.2 Factors affecting FRP-Concrete Bond Strength	28 -

2.7 Durability of FRP Systems	29 -
2.8 Plate End Debonding Failure Mechanism	30 -
2.8.1 Overview of Existing PE Debonding Models	32 -
2.8.2 Mechanics of Materials Approach	33 -
2.8.2.1 Interfacial Stress Models	33 -
2.8.2.2 Concrete Tooth Models	41 -
2.8.2.3 Shear Strength Models	45 -
2.8.3 Fracture Mechanics Approach	50 -
2.8.4 Empirical Formulas	54 -
2.9 Intermediate Crack Induced Debonding Failure Mechanism	55 -
2.9.1 Overview of Existing IC Debonding Models	57 -
2.9.2 Mechanics of Materials Approach	59 -
2.9.3 Fracture Mechanics Approach	64 -
2.9.3.1 Single Crack Models	64 -
2.9.3.2 Multiple Cracks Models	79 -
2.9.4 Empirical Formulas	83 -
2.10 Design Guidelines Recommendations for Debonding Failure M	echanism 85 -
2.10.1 The American Concrete Institute	85 -
2.10.2 The Egyptian Code of Practice	86 -
2.10.3 The Chinese Design Guideline	86 -
2.10.4 The Italian Design Guideline	87 -
2.10.5 The fib Approach	87 -
2.10.6 The Japan Society of Civil Engineers	89 -
2.10.7 The Concrete Society	89 -
2.11 Failure Criteria	90 -
2.11.1 Mohr-Coulomb Criteria	
2.11.2 Empirical Criteria	91 -
2.12 Mitigation of Debonding	
2.12.1 Transverse U-Wraps	
2.12.2 Other Anchorage Details	
CHAPTER 3: DEBONDING DATABASES	
3.1 General	
3.2 Plate End Debonding Database	96 -
3.2.1 PE Database Selection Criteria	96 -

	3.2.2	Assumptions for Geometric and Material Properties of PE	Database 97 -
	3.2.3	Experimental Studies included in PE Database	98 -
3.3	Inter	mediate Crack Debonding Database	120 -
	3.3.1	IC Database Selection Criteria	120 -
	3.3.2	Assumptions for Geometric and Material Properties of IC I	Oatabase 121 -
	3.3.3	Experimental Studies included in IC Database	121 -
3.4	Data	base Characteristics	147 -
	3.4.1	Loading Scheme	147 -
	3.4.2	Shear Span-to-Depth Ratio	147 -
	3.4.3	Concrete Cross-section Shape	150 -
	3.4.4	Concrete Cylinder Compressive Strength	150 -
	3.4.5	FRP Type	150 -
	3.4.6	FRP Strip Curtailment Distance	150 -
	3.4.7	FRP-to-Concrete Width Ratio	150 -
	3.4.8	FRP Thickness of Single Layer	155 -
	3.4.9	Number of FRP Plies	155 -
	3.4.10	Adhesive Thickness	155 -
CF	IAPTI	R 4: FINITE ELEMENT MODELING	159 -
4.1	Gen	ral	159 -
4.2		e Element Modeling	
4.3		tion Strategy	
4.4		.	
		eloped FE Models	
4.5		ent Models	
		Solid Elements	
		Truss Elements	
4.6		rial Models	
		Concrete Material Modeling	
		.6.1.1 Equivalent Uniaxial Behavior	
		.6.1.3 Fracture Process and Crack Width	
		.6.1.4 Biaxial Failure Criterion	
			· · · · · · · · · · · · · · · · · · ·
	۷	.6.1.5 Compressive Strength of Cracked Concrete	
		.6.1.5 Compressive Strength of Cracked Concrete	177 -

	2	4.6.1.8 Three-Dimensional Stress State	181 -
	4.6.2	Steel Reinforcement Material Modeling	181 -
	4.6.3	FRP Reinforcement Material Modeling	182 -
	4.6.4	Adhesive Material Modeling	183 -
	4.6.5	Loading Plates and Supports Material Modeling	183 -
4.7	Mes	h Configuration	183 -
4.8	Inte	ractions	185 -
	4.8.1	Contact between Concrete Beam and Adhesive Layer	185 -
	4.8.2	Contact between Concrete Beam and Interior Steel Reinforcement	189 -
	4.8.3	Contact between Concrete Beam and Steel Plates	189 -
4.9	Load	ding Conditions	189 -
4.1	0 Bou	ndary Conditions	190 -
		ure Criteria	
		Modeling of RC Beams in ATENA	
		Analysis Results	
т.1		FE Analysis of Beams Calibrating the Model	
			1/2
	4.13.2	2 FE Analysis Results of the Compiled Databases	202 -
OT:		2 FE Analysis Results of the Compiled Databases	
	IAPTI	ER 5: PLATE END DEBONDING MODELS	209 -
CH 5.1	IAPTI		209 -
5.1	IAPTI Gen	ER 5: PLATE END DEBONDING MODELS	- 209 - 209 -
5.1	Gen Asse	ER 5: PLATE END DEBONDING MODELS	209 - 209 - 210 -
5.1	Gen-Asse	eralerssment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 -
5.1	Gen- Asso 5.2.1	eralerssment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 -
5.1	Gen Asso 5.2.1	eralessment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 - 218 -
5.1	Gendasse Asse 5.2.1	eralessment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 - 218 - 225 -
5.1	Gen. Asse. 5.2.1	eralessment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 - 218 - 225 - 232 -
5.1	Gen. Asso. 5.2.1	eralessment of Existing PE Debonding Strength Models	209 - 209 - 210 - 211 - 218 - 225 - 232 - 236 -
5.1 5.2	Gen. Asso. 5.2.1	eral	209 - 209 - 210 - 211 - 218 - 225 - 232 - 236 - 250 -
5.1 5.2	Gen. Asso. 5.2.1	eral	209 - 209 - 210 - 211 - 218 - 225 - 232 - 236 - 250 -
5.1 5.2	Gen. Asse. 5.2.1 5.2.2 5.2.3 Asse. 5.3.1	eral	209 - 209 - 210 - 211 - 218 - 225 - 232 - 236 - 250 - 250 - 252 -
5.1 5.2	Gen. Asse 5.2.1 5.2.2 5.2.3 Asse 5.3.1 5.3.2	eral	209 209 210 211 211 218 225 232 236 250 250 252 253 -

5.4	Stat	istical Analysis of Existing PE Debonding Strength Models, Design	Guidelines
	Rec	ommendations, and Numerical Analysis	260 -
	5.4.1	Mechanics of Materials Approach	262 -
		5.4.1.1 Interfacial Stress Models	262 -
		5.4.1.2 Concrete Tooth Models	263 -
		5.4.1.3 Shear Strength Models	265 -
	5.4.2	Fracture Mechanics Approach	266 -
	5.4.3	Empirical Formulas	266 -
	5.4.4	Design Guidelines and Numerical Analysis	267 -
CF	IAPT	ER 6: INTERMEDIATE CRACK DEBONDING MODELS	277 -
6.1	Gen	neral	277 -
6.2	Ass	essment of Existing IC Debonding Strength Models	278 -
	6.2.1	Mechanics of Materials Approach	279 -
	6.2.2	Fracture Mechanics Approach	284 -
	6.2.3	Empirical Formulas	302 -
6.3	Ass	essment of Design Guidelines Recommendations	321 -
	6.3.1	The American Concrete Institute	321 -
	6.3.2	The Egyptian Code of Practice	322 -
	6.3.3	The Chinese Design Guideline	322 -
	6.3.4	The Italian Design Guideline	324 -
	6.3.5	The fib Approach	325 -
	6.3.6	The Japan Society of Civil Engineers	327 -
	6.3.7	The Concrete Society	327 -
6.4	Stat	istical Analysis of Existing IC Debonding Strength Models, Design	Guidelines
	Rec	ommendations, and Numerical Analysis	333 -
	6.4.1	Mechanics of Materials Approach	334 -
	6.4.2	Fracture Mechanics Approach	335 -
	6.4.3	Empirical Formulas	337 -
	6.4.4	Design Guidelines and Numerical Analysis	338 -
CE	IAPT]	ER 7: PARAMETRIC STUDY	347 -
7.1	Gen	neral	347 -
7.2		ameters Affecting Bond Strength of FRP-Retrofitted System	
		ametric Study	
		PS Database Assembly	

7.3.2 PS Database Analysis and Results	355 -
7.3.3 Discussion of the Results	356 -
7.3.3.1 Group 1: Beam Size Effect	356 -
7.3.3.2 Group 2: Effect of Concrete Compressive Strength	358 -
7.3.3.3 Group 3: Effect of Concrete Cover Thickness	360 -
7.3.3.4 Group 4: Effect of Main Flexural Reinforcement Ratio	362 -
7.3.3.5 Group 5: Effect of Shear Reinforcement Ratio	364 -
7.3.3.6 Group 6: Effect of FRP-to-Concrete Width Ratio	366 -
7.3.3.7 Group 7: Effect of FRP Thickness	368 -
7.3.3.8 Group 8: Effect of Adhesive Thickness	370 -
7.3.3.9 Group 9: Effect of Adhesive Elastic Modulus	372 -
7.3.3.10 Group 10: Effect of Bond Length	374 -
7.4 Proposed Model	376 -
7.4.1 Assumptions	377 -
7.4.2 Multiple Regression Analysis Procedures	379 -
7.4.3 Summary of the Proposed Model	384 -
7.4.4 Verification of the Proposed Model	387 -
7.5 Assessment of the Proposed Model	388 -
7.6 Statistical Analysis of the Proposed Model and Design Guidelines	396 -
CHAPTER 8: SUMMARY & CONCLUSIONS	401 -
8.1 General	
8.2 Summary	
8.3 General Conclusions	
8.4 Detailed Conclusions	
8.4.1 Plate End Debonding Analytical Models	
8.4.2 Intermediate Crack Debonding Analytical Models	
8.4.3 Non-Linear Finite Element Analysis	416 -
8.4.4 Parametric Study on Bond Behavior	417 -
8.4.5 Proposed Model	419 -
8.5 Recommendations for Future Research	420 -
REFERENCES	- 421 -