الكشف عن بعض الجينات المثبطة للانتحار الخلوي وإيقاف تعبيرها الجيني بواسطة تقنية RNA التداخلي في بعض خطوط خلايا السرطان الحيوانية

رسالة مقدمة من شيماء عيد عبد الغنى إبراهيم

بكالوريوس علوم زراعية (وراثة)، جامعة عين شمس، 2002. ماجستير العلوم البيئية (قسم العلوم الزراعية البيئية)، معهد الدراسات والبحوث البيئية، جامعة عين شمس، 2010.

لاستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية

قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

Detection and Suppression of Some Anti Apoptosis Gene Expression by RNAi Approach in Different Animal Cancerous Cell Lines

Submitted By Shimaa Eid Abdel Ghany Ibraheem

B.Sc. of Agricultural Sciences. (Genetics), Faculty of Agriculture, Ain shams University, 2002.

Master of Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2010.

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Agricultural Science Institute of Environmental Studies and Research Ain Shams University

صفحة الموافقة على الرسالة

الكشف عن بعض الجينات المثبطة للانتحار الخلوي وإيقاف تعبيرها الجيني بواسطة تقنية RNA التداخلي في بعض خطوط خلايا السرطان الحيوانية

رسالة مقدمة من

شيماء عيد عبد الغنى إبراهيم

بكالوريوس علوم زراعية (وراثة)، جامعة عين شمس، 2002. ماجستير العلوم البيئية (قسم العلوم الزراعية البيئية)، معهد الدراسات والبحوث البيئية، جامعة عين شمس، 2010.

لاستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية قسم العلوم الزراعية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها اللجنسسة

APPROVAL SHEET

Detection and Suppression of Some Anti Apoptosis Gene Expression by RNAi Approach in Different Animal Cancerous Cell Lines

BY

Shimaa Eid Abdel Ghany Ibraheem

B.Sc. Agric. Sci. (Genetics) Ain Shams University, 2002.M.Sc., Institute of Environmental Studies and Research,Ain Shams University 2010.

This thesis for Ph.D. degree in environmental science has been approved by:

Name: Signature

الكشف عن بعض الجينات المثبطة للانتحار الخلوي وإيقاف تعبيرها الجيزي بواسطة تقنية RNA التداخلي في بعض خطوط خلايا السرطان الحيوانية

رسالة مقدمة من

شيماء عيد عبد الغنى ابراهيم

بكالوريوس علوم زراعية (وراثه)، جامعة عين شمس 2002. ماجستير العلوم البيئية (قسم العلوم الزراعية البيئية)،معهد الدراسات والبحوث البيئية، جامعة عين شمس 2010.

> لإستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية قسم العلوم الزراعية البيئية

> > تحت إشراف/

ا.د. سمير عبد العزيز إبراهيم أستاذ الوراثة- كلية الزراعة-جامعة عين شمس ا.د. ثناء ابو سريع هارون أستاذ علم الحيوان – كليه الزراعه-جامعة الفيوم.

ختم الإجازة أجيزت الرسالة بتاريخ / 2014/ موافقة مجلس المعهد موافقة مجلس الجامعة 2014/ / 2014/

Detection and Suppression of Some Anti Apoptosis Gene Expression by RNAi Approach in Different Animal Cancerous Cell Lines

BY

Shimaa Eid Abdel Ghany Ibraheem

B.Sc. Agricultural Sciences. (Genetics) faculty of Agriculture. Ain Shams University, 2002.

Master of Environmental Science, Institute of Environmental Studies & Research Ain Shams University 2010.

A thesis Submitted in Partial Fulfillment

Of

The Requirements for the Doctor of Philosophy

In

Environmental Sciences

Department of Environmental Agricultural Science

Under the supervision of:

1- Prof. Dr. Samir Abdel Aziz Ibraheem

Professor of genetic, Faculty of Agriculture, Ain Shams Univ.

2- Prof. Dr. Sanaa Abo-seri Haroon

Professor of Zoology, Faculty of Agriculture, Fayum Univ.

2014

ACKNOWLEDGEMENT

First of all, gratitude and thanks to **ALLAH** who always helps and guides me.

I wish to express my deepest gratitude and sincere appreciation to **Prof. Dr. Samir A. Ibrahim.**, Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University, for suggesting the plan of this work, supervising this work. His valuable criticism, reading the manuscript, and useful suggestions throughout this investigation are greatly appreciated.

I would like to express thanks to **Prof. Dr. Sanaa A. Haroon,** Professor of Zoology, Faculty of Agriculture, Fayyoum University, for supervision of this work.

Many thanks are due to **Prof. Dr. Hesham El-Kasssas**, Head of Agriculture sciences, Institute of Environmental Studies and Research, Ain Shams University.

My deepest thanks also goes to **Dr. Marwa Mohammed**, Researcher at Institute of Plant Protection, ARC, for her valuable assistance throughout the progression of this work.

Warm appreciation also should be given to both Mrs. Abeer and Mrs. Noureen from the Institute of Environmental Studies and Research, Ain Shams University for their help and support during conducting of this work.

Sincere thanks and appreciation are due to all **staff members** of the College of Biotechnology, Misr University for Science and Technology for their support during the conduction of this work.

Finally, especial thanks and gratitude are also offered to my parents, my husband, my daughters, my son, and my sisters for their great encouragement and support during the period of my investigation.

LIST OF ABBREVIATIONS

BC	Breast cancer
BIR	Baculovirus IAP repeat
BIRC	BIR-containing
BIRC1	Baculoviral IAP repeat-containing protein 1
BIRC2	Baculoviral IAP repeat-containing protein 2
BIRC3	Baculoviral IAP repeat-containing protein 3
BIRC4	Baculoviral IAP repeat-containing protein 4
BIRC5	Baculoviral IAP repeat-containing protein 5
BIRC6	Baculoviral IAP repeat-containing protein 6
BIRC7	Baculoviral IAP repeat-containing protein 7
BIRC8	Baculoviral IAP repeat-containing protein 8
BRCA1	Breast cancer susceptibility gene 1
BRUCE	Baculoviral IAP repeat-containing ubiquitin
	conjugating enzyme
CaCo-2	colon cancer cell line
CDK4	Cyclin-dependent kinase 4
cDNA	Complimentary dioxy nucleotide acetic acid
c-IAP1,2	Cellular- Inhibitor of apoptosis proteins
DMEM	Dulbecco's Modified Eagle Medium
dsRNA	Double-stranded RNA
dsRNA	Double-stranded RNA
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-Linked Immunosorbent Assay
HCC	Hepatocellular carcinoma
HeLa	Henrietta Lacks (cervical cancer cell line)
Hep-G2	hepatiocellular carcinoma cell line
HPV	Hereditary NonPolyposis Colorectal Cancer
IAPs	Inhibitor of apoptosis proteins
IGF-1	Insulin - like growth factor 1
MAbs	Monoclonal antibodies
MCF-7	Michigan Cancer Foundation – 7
MCF-7	Michigan Cancer Foundation – 7 (Breast cancer cell
	line)
mRNA	Messenger ribo nucleotide acetic acid

MTT Assay	3-(4, 5-dimethylthiazolyl-2)-2, 5-
·	diphenyltetrazolium bromide
NCCD	Nomenclature Committee on Cell Death
NSCLCs	Nonsmall cell lung carcinomas
PBS	Phosphate Buffer Saline
PCD	Programmed cell death
PCR	Polymerase Chain Reaction
PS	Phosphatidylserine
RISC	RNA-induced silencing complex
RLT	RNA Lysis Tissues and cells buffer
RNAi	Raibo Nuclease acetic acid interference
RT	Reverse Transcription
SATB1	Special AT- rich sequence binding protein 1
SCLC	Small cell lung cancer
siRNAs	Small interfering RNAs
Smac	Second mitochondria-derived activator of caspase
SOS1	Son of Sevenless Homolog 1
TAS-ELISA	Triple Antibody Sandwich ELISA
XIAP	X-linked Inhibitor of apoptosis proteins
β-МЕ	β-mercaptoethanol

CONTENTS

			Page
I.	INTE	RODUCTION	1
II.	REVIEW OF LITERATURE		
	2.1.	Cancer	4
		2.1.1. Lung cancer	5
		2.1.2. Cervical cancer	7
		2.1.3. Colon cancer	9
	2.2.	Apoptosis	9
	2.3.	IAP family	11
		2.3.1. Survivin as a member of AIP family	12
		2.3.2. Livin as a member of AIP family	16
	2.4.	siRNA approach	23
III.	MATI	ERIALS AND METHODS	28
	3.1.	Cell Lines	28
		3.1.1. Cell Culturing	29
	3.2.	Trypan blue assay	30
	3.3.	SiRNA transfection	30
		3.3.1. Survivin	30
		3.3.2. Survivin Isoforms	31
		3.3.3. Survivin primer design	32
		3.3.4. siRNA target sequence for surviving	32
		3.3.5. Livin	32
		3.3.6. Livin isoform	32
		3.3.7. Livin specific primers will be	33
		3.3.8. siRNA target sequence for livin	33
	3.4.	Transfection with survivin and livin siRNA	33
	3.5.	MTT assay	35
	3.6.	RNA Extraction	36
		3.6.1. Things to do before starting	36
	3.7.	Complimentary DNA Synthesis	38
		3.7.1. Preparing the 2x Reverse Transcription (RT) Master	38
		Mix	30

3.8.	Real time PCR analysis
	3.8.1. Protocol
3.9.	Protein Extraction
	3.9.1. Enzyme-Linked Immunosorbent Assay (ELISA) 4
	3.9.2. SDS-PAGE (12%)
3.7.	Statistical analysis 4
IV. RESUI	L TS 4
4.1.	Cell culturing
4.2.	Trypan Blue Test
4.3.	Transfection with Livin-targeting siRNA 4
4.4	Transfection with Survivin-targeting siRNA
4.5.	Transfection with Livin-targeting siRNA/Survivin- targeting siRNA mix
4.6.	MTT Assay5
4.7.	RNA extraction. 6
4.8.	Real-Time PCR
4.9.	DAS-ELISA 6
V. DISCUS	SSION 7
VI. SUMM	IARY 8
VII. REFE	RENCES 8
ARABIC S	SUMMARY

LIST OF TABLES

η	r_	ւ	۱.
	1	1)	

number	Table title	Page
1	To prepare the 2x RT master mix (per 20-μL reaction)	38
2	Reaction setup	40
3	Real-time cycler conditions	40
4	ELISA buffers	43
5	Preparation of the resolving and stacking gels for 12%	
	SDS-PAGE analysis	45
6	The total number of viable and non-viable cells counted	
	before transfection	48
7	The number of viable and non-viable cell after transfec-	
	tion with Livin-targeting siRNA. B refers to before trans-	
	fection, while A refers to after transfection	49
8	The number of viable and non-viable cell after transfec-	
	tion with Survivin-targeting siRNA. B refers to before	
	transfection, while A refers to after transfection	51
9	The number of viable and non-viable cell after transfec-	
	tion with Livin-targeting siRNA/Survivin-targeting siR-	
	NA mix. B refers to before transfection, while A refers to	
	after transfection	53
10	The readings obtained from ELISA reader for all cell lines	
	after being transfected with the two genes and their mix.L:	
	Livin, S: Survivin, and L/S: Livin-Survivin mix	55
11	The percentages of viable cells after transfection as calcu-	56

	lated using MTT data	
12	The percentages of cells that committed apoptosis after	
	transfection as calculated using MTT data	56
13	cDNA concentration obtained from cells before and after	
	transfection	61
14	The differences in cDNA concentrations from before and	
	after transfection and the rate of downregulation	63
15	Ct differences obtained from RT-qPCR for all genes and	
	cell lines under study. B: before transfection, and A: after	
	transfection	64
16	The fold differences for each gene/cell line as obtained by	
	the $\Delta\Delta CT$ method	65
17	The readings of OD for all transfected and non-transfected	
	cells.	68
18	The differences in OD between "before" and "after"	68

LIST OF FIGURES

T7.		
۲ı	gu	re

number	Figure title	Page
1	Survivin isoform	31
2	Livin isoform	32
3	The mechanism of RNAi and RNAi delivery methods	33
4	Mechanism of MTT assay	35
5	The four cell lines under study as viewed under inverted micro-	
	scope with magnification power of 10 X	47
6	The percentages of viable and non-viable cells after being trans-	
	fected with Livin-targeting siRNA	50
7	The percentages of viable and non-viable cells after being trans-	
	fected with Livin-targeting siRNA	50
8	The percentages of viable and non-viable cells after being trans-	
	fected with Survivin-targeting siRNA	51
9	The percentages of viable and non-viable cells after being trans-	
	fected with Survivin-targeting siRNA	52
10	The percentages of viable and non-viable cells after being trans-	
	fected with livin-targeting siRNA/Survivin-targeting siRNA	
	mix	53
11	The percentages of viable and non-viable cells after being trans-	
	fected with Livin-targeting siRNA/Survivin-targeting siRNA	
	mix	54
12	The percentages of viable and non-viable A 519 cells after be-	
	ing transfected with L, S, and L/S	57
13	The percentages of viable and non-viable HCT 116 cells after	
	being transfected with L, S, and L/S	57

14	The percentages of viable and non-viable HeLa cells after being	
	transfected with L, S, and L/S	58
15	The percentages of viable and non-viable Vero cells after being	
	transfected with L, S, and L/S	58
16	The percentages of viable and non-viable cells after being trans-	
	fected with Livin-targeting	59
17	The percentages of viable and non-viable cells after being trans-	
	fected with Survivin-targeting siRNA	59
18	The percentages of viable and non-viable cells after being trans-	
	fected with Livin-targeting siRNA/Survivin-targeting siRNA	
	mix	60
19	MTT plate show the viability of cell lines after transfection that	
	was illustrated by color change	60
20	The differences in RNA concentrations from before and after	
	transfection and the rate of downregulation	62
21	The rate of downregulation for different genes/mix	63
22	Livin mRNA fold differences in the four cell lines under study	65
23	Survivin mRNA fold differences in the four cell lines under	
	study	66
24	Livin/Survivin mRNA fold differences in the four cell lines	66
25	The specific activity of each gene in each cell line	67
26	The downregulation of Livin mRNA as indicated by the reduc-	
	tion in protein content in different cell lines	69
27	The downregulation of Survivin mRNA as indicated by the re-	
	duction in protein content in different cell lines	69
28	The downregulation of Livin/Survivin mRNA as indicated by	
	the reduction in protein content in different cell lines	70
29	Reduction in protein content in different cell lines treated with	