

Electronics and Communications Engineering Department

Solar Cells Efficiency Enhancement Using Low Cost Methods

A Thesis Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communication Engineering)

Submitted by:

Sameh Osama Ezzat Abdellatif

M.Sc. in Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2012

Supervised By

Prof. Wagdy Refaat Anis Prof. Khaled Abdelwahab Kirah Dr. Rami Mohamed Ghannam Dr. Ahmed Saad Goma Khalil

Cairo, 201

FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Solar Cells Efficiency Enhancement Using Low Cost Methods

Submitted by:

Sameh Osama Ezzat Abdellatif

M.Sc. in Electrical Engineering

(Electronics and Communications Engineering)

Ain Shams University, 2012

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Examiners Committee

Name: Sameh Osama Ezzat Abdellatif
Thesis: Solar Cells Efficiency Enhancement Using Low Cost
Methods

Degree: Doctor of Philosophy in Electrical Engineering

(Electronics and Communications Engineering)

EXAMINERS COMMITTEE

Name	Signature
Prof. Kamel Mohamed Mahmoud Hassan Future University, Faculty of Engineering and Technology, Electronics and Communications Engineering Dept.	••••••
Prof. Hani Fikry Mohamed Ragai Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	••••••
Prof. Wagdi Refaat Anis Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	•••••••
Prof. khaled Abdelwahab Kirah Ain Shams University, Faculty of Engineering, Engineering Physics and Mathematics Dept.	
	Date: //

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Sameh Osama Ezzat Abdellatif

Signature:

Date:

Researcher Data

Name : Sameh Osama Ezzat Abdellatif

Date of birth : January, 12, 1987

Place of birth : London, UK

Academic Degree : M.Sc. in Electrical Engineering

Field of specialization : Electronics and Communications Engineering

University issued the degree : Faculty of Engineering, Ain Shams University

Date of issued degree : August, 2012

Current job : Assistant lecturer at the British University in Egypt

Abstract

Thin film solar cells (TFSCs) where first introduced as a low cost alternative to conventional thick ones. TFSCs show low conversion efficiencies due to the used low quality materials having weak absorption capabilities and thin absorption layers. In order to increase light absorption within the active layer, especially near its absorption edge, photon management techniques were proposed. These techniques could be implemented on the top of the active layer to enhance the absorption capabilities and/or to act as anti-reflecting coating structures. When used at the back side, their purpose is to prevent the unabsorbed photons from escaping through the back side of the cell. The attached structure will act to increase the optical path length of the photons, especially those in weak absorption portions of spectrum, increasing its probability of absorption.

In this thesis, we coupled the finite difference time-domain (FDTD) algorithm for simulating light interaction within the cell with the commercial simulator Comsol Multiphysics for describing carrier transports in thin film solar cells. An innovative algorithm for modelling the dispersion as well as absorption behaviour of the solar cells materials including the semiconductor active layer is demonstrated using Lorentzian-Drude (LD) coefficients. The algorithm is then tested by fitting its output with experimentally measured permeability of different materials used in TFSC fabrication, showing excellent agreement.

We thus compared the absorption profile in the different layers of the cell, the improvements in photon absorption in the active layer and the power conversion efficiency achieved by 3 different sandwiching light trapping structures: textured surface, nanowires and dielectric nanospheres on the top of the active layer. For textured surface as well as nanowires structures, an anti-reflective coating (ARC) effect is introduced on the surface reducing the reflected photons from the front surface of active layer. In the nanospheres topologies coupling modes will occur (whispering gallery modes) which Contributes to the absorption spectrum of the active layer material leading to efficiency enhancement. Besides that, 1D, 2D and cascaded photonic crystal structures are added at the back side of the active layer. These structures will contribute not only as a back reflector but also as a high diffracting order structures to increase the probability of total internal reflection inside the active layer. The simulation results are validated by previously measured experimental results when relevant.

Consequently, the experimental work is illustrated showing some primitive trials in fabricating a thin film of various materials and simple 1D photonic crystal structures for accrediting the simulation models. Finally, the main findings and outcomes of the thesis are drafted in the conclusion section. The pros and cons of different topologies implemented in this thesis and the corresponding enhancement in the total conversion efficiency of the TFSC were highlighted for each topology.

Acknowledgment

First and foremost, I would like to thank my supervisors Prof. Wagdy Anis, Prof. Khaled Kirah, Dr. Rami Ghannam and Dr. Ahmed Khalil for their continuous guidance, encouragement and help. They helped me throughout the Thesis. I learned so many valuable things from them. I would like also to thank them for their patience.

This work is part of SURSYS project funded by the German Academic Exchange Service (DAAD) and financed by the Federal Foreign Office. The author acknowledges the valuable support of Prof. Mathias Ulbricht, Dr. Michael Eisinger and Mr. Simon Kustos (Kresmann). We would also like to acknowledge the support of The World Academy of Sciences (TWAS) for providing the necessary computational resources.

I would also like to thank all of Ain Shams University, faculty of engineering members from whom I took classes while here. I would also like to thank my colleagues in the Innovation lab from whom I took introduction to different equipment. Also I would like to acknowledge my colleagues Dominik Daume and Robert Tone who help me through my research trips in Germany

An acknowledgment to my affiliation, The British University in Egypt (BUE), for their support by providing me a weekly research day for implementing my thesis work and a three months leave per year for my annual trip to Germany. Special thanks to prof. Hani Amin Ghalli for his constant support, guidance and encouragement. I also owe a great deal of gratitude to a number of other friends and colleagues at the BUE both past and present. Those especially deserving of a mention include Prof. Fatma Abu-Chadi, Dr. Tarek Saad, Eng. Ibrahem Gouda, Eng. Peter Makeen, Eng. Nathalie Nazih, Eng. Haitham Hassan Eng. Abdellaziz Bayoumi and Eng. Anwar Magdy. I have learned a great deal from all of them.

Many Thanks go to my colleagues and friends for their support and help during my thesis. Last but not least, I would like to thank my family, my parents, sisters and young nephew. Their patience, care, and love are what made me.

Contents

Abstract		<i>v</i>
Acknow	ledgment	vi
List of F	igures	x
List of T	Tables	xiv
List of A	bbreviations	xv
List of S	ymbols	xvi
Publicat	ions	xvii
Chapter	One Introduction	1
1.1. In	troduction	1
1.2. Tl	hin Film Solar Cells	3
1.3. Pr	roblem Statement	4
	mulation Platform	
	1. MEEP	
1.5. Ed	conomical aspects for thin film solar cells	6
1.6. Tl	hesis outline	7
Chapter	Two Theoretical Background and Literature Survey	8
2.1.	Introduction	8
2.2.	Hydrogenated amorphous silicon	
2.2.2 2.2.2		
2.2.3	1 1	
2.3.	Thin film solar cells as a p-i-n junction.	
2.4.	p-i-n junction model	
2.5.	Previous attempts in modelling thin film solar cells	
2.6.	Summary	
-	Three Dispersive Material Modelling	
3.1.	Introduction	
3.2.	Lorentzian-Drude (LD) model	
3.3.	Modelling Dispersive Conducting Materials	
3.4.	Modelling Dispersive Semiconducting Materials	
3.5.	Analytical model	
3.6.	Validating the numerical model	
3.7. 3.7.1	Simulating some typical light trapping structures 1 Anti-reflective Coating	
3.7.2	2 Metal Back Reflector	32
3.7.3 3.7.4	ee v	

3.8	Summary	36
Chapter	Four Enhancing Thin Film Solar Cells Efficiency using Sandwiched Stru	cture 38
4.1.	Introduction	38
4.2.	Simulation model	39
4.3.	Simulating thin film solar cell	40
4.4.	Backside photonic crystal structures	
4.5.	Nanowires as an anti-reflective coating	
4.6.	Summary	
Chapter	Five Whispering Gallery Modes for thin Film solar Cells Efficiency Enhan	icement
5.1	Introduction	
5.2.	Whispering gallery modes in Nanospheres	51
5.2. 5.2.		52
5.2. 5.2.		
5.2.		
5.2. 5.2.	1	
5.3.	Whispering Gallery Modes Coupling in Thin Film Solar Cells	
5.4.	Thin Film Solar Cells Sandwiched by Silica Nanospheres.	
	· · · · · · · · · · · · · · · · · · ·	
5.5.	Summary	
-	Six Fabrication and Characterization Process	
6.1	Introduction	
6.2	Fabrication Process	
6.2. 6.2.	· · · · · · · · · · · · · · · · · · ·	
6.3	UV-VIS Spectrometer	70
6.3.	1 Setup	70
	2. Measuring Procedure	
	ektak Profilometer	
6.5 M	aterials and additional equipment	74
	bricating and Characterizing thin film layer	
6.6.	1 Thin film of Ag	74
	3 Thin film of SiO ₂	
6.7.	1 The JPMC method	79
6.7. 6.7	2 The Wanga Method	79
	omparison between experiments and simulations	
	conomical aspects for the proposed light trapping structures	
	ummary	
	•	
-	Seven Conclusions	
7.1.	Conclusions	85

7.2.	Future work	.86
Referenc	es	.87
Appen	dix	. 92

List of Figures

Figure 1.1: Types of Photovoltaic [12]	2
Figure 1.2: Bulk verses. thin film solar cells [12]	3
Figure 1.3: Schematic diagram for MEEP model used for calculating transmission and	
reflection spectra	6
Figure 2.1: a schematic diagram for the atomic structure of (a) c-Si, and (b) a-Si:H [32]	9
Figure 2.2: a schematic diagram for density of sates of (a) c-Si and (b) a-Si:H [31]	9
Figure 2.3: The absorption coefficient of various a-Si types as well c-Si [31]	10
Figure 2.4: Schematic diagram of thin film solar cells as a p-i-n junction	
Figure 2.5: Energy band diagram as a p-i-n junction	12
Figure 2.6: electrons and holes concentration across the i-layer in the p-i-n junction	13
Figure 2.7: electrons and holes concentration across the i-layer in the p-i-n junction under	
external bias	15
Figure 2.8: Energy band diagram across the i-layer in the p-i-n junction under external bia	
Figure 2.9: collecting efficiency verse wavelength as in [35].	
Figure 2.10: improved verses stander multi-junctions TFSC as given in [36]	
Figure 2.11: improved verses stander multi-junctions TFSC as given in [37]	
Figure 3.1: LD fitting curves for the real and the imaginary parts of the Ag permittivity us	_
experimental data	20
Figure 3.2: LD fitting curves for the real and the imaginary parts of the ITO permittivity	
using measured data	
Figure 3.3: LD fitting curves for the real and the imaginary parts of the Au permittivity us	
experimental data	
Figure 3.4: LD fitting curves for the real and the imaginary parts of the Al permittivity us	
experimental data in [4].	
Figure 3.5: LD fitting curves for the real and the imaginary parts of the ZnO refractive inc	
using experimental data in [5]	
Figure 3.6: the LD fitting process for semiconductor materials	
Figure 3.7: Experimental [1] and fitted Lorentz-Drude model for the real and imaginary p	
of the silicon permittivity in the first sub-band where the imaginary part is plotted log sca	
Figure 3.8: Experimental [1] and fitted Lorentz-Drude model for the real and imaginary p	
of the silicon permittivity in the second sub-band where the imaginary part is plotted in be	
- · · · · · · · · · · · · · · · · · · ·	24
Figure 3.9: Experimental [1] and fitted Lorentz-Drude model for the real and imaginary p	
of the silicon permittivity in the third sub-band where the imaginary part is plotted log sca	
Figure 3.10: The mean error for the real and imaginary parts of Si permittivity through the	
entire wavelength of solar spectrum	
Figure 3.11: Experimental [2] and fitted Lorentz-Drude model for the real and imaginary	
parts of the Germanium refractive index in the first sub-band	
Figure 3.12: Experimental [2] and fitted Lorentz-Drude model for the real and imaginary	
parts of the Germanium refractive index in the second sub-band	
Figure 3.13: Experimental [3] and fitted Lorentz-Drude model for the real and imaginary	
parts of the GaAs refractive index in the first sub-band	
parto or the Our to retract to index in the interest out outle	••• /

Figure 3.14: Experimental [3] and fitted Lorentz-Drude model for the real and imaginary	
parts of the GaAs refractive index in the second sub-band	27
Figure 3.15: Experimental [3] and fitted Lorentz-Drude model for the real and imaginary	
parts of the GaAs refractive index in the third sub-band	27
Figure 3.16: The number of iteration required for variable and fixed LD coefficients	28
Figure 3.17: The fitting time required for variable and fixed LD coefficients	
Figure 3.18: A comparison between the numerical and the analytical simulation models for	r a
125 nm Si thin film.	30
Figure 3.19: Thin film layer Simulation Model with two input Gaussian sources for TE and	
TM modes.	
Figure 3.20: The effect of a flat and textured ARC layer on Si surface.	
Figure 3.21: Ag back reflector reflectance	
Figure 3.22: A comparison between the numerical simulation results and the experimental	
data [49] for a thin and thick ZnO layer in a flat Ag/ZnO back reflector	
Figure 3.23: A comparison between the numerical simulation results and the experimental	
data [26] for a thin and thick ZnO layer in a textured Ag/ZnO back reflector	33
Figure 3.24: Effect of incidence angle variation on the reflectance of a thin ZnO layer in	
Ag/ZnO back reflector.	
Figure 3.25: Si/SiO2 6-layer DBR reflectance	
Figure 3.26: Si/SiO2 Reflectance under various incident angles	
Figure 3.27: Si/ITO 10layers DBR reflectance	35
Figure 3.28: (a) 3D schematic for the 1D grating structures. (b) X-Z cross section for 1D	
grating structure	
Figure 3.29: 1D grating structure with aspect ratio of 1 (red curve) and 2.4 (blue curve)	
Figure 4.1: Schematic diagram for the proposed enhanced TFSC	
Figure 4.2: LD fitting process for a-Si	
Figure 4.3: 3D schematic for TFSC using Comsol Multiphysics	
Figure 4.4: Absorption profile for TFSC	
Figure 4.5: a) The EQE of a TFSC, b) The J-V curve for a TFSC with and without adding	
contact effect. Experimental data are reprinted with permission from Ref[62]	42
Figure 4.6: a) A schematic for the TFSC with cascaded PC light trapping structures b) A	
section plan for the 2D PC structure at x-x	
Figure 4.7: Si/ITO DBR reflectance.	45
Figure 4.8: a) The x-y absorption profile across multi layers in the TFSC, b) The y-z	
absorption profile across the whole TFSC layers	
Figure 4.9: EQE of a TFSC, TFSC with DBR structure and a TFSC with cascaded DBR ar 2D PC structures.	
Figure 4.10: J-V curves of a bare TFSC, TFSC with DBR structure and a TFSC with	40
cascaded DBR and 2D PC structures	16
Figure 4.11: The absorption profile of a TFSC with cascaded light trapping structure and N	
ARC	
Figure 4.12: NW length and diameter optimization	
Figure 4.13: The process of increasing the NW radius with increasing the filling ratio at a	+0
constant unit area with constant separation between the NW	40
Figure 4. 14: Surface reflectance for a flat, textured and NW ARC TFSC upper surface	
Figure 4.15: J-V curves for a flat, textured and NW ARC TFSC upper surface	
TIGGIO 1.15.6 7 OULTOD TOL U LIUG CONCULOU UNU LIVI ANNO LI DO UDDOL DULLUO	

Figure 5.1: The Bessel function variation for the first five TE modes59
Figure 5.2: Normalized electric field distribution for the first six modes, n=1 to 3, where the
mode indices, (n,m,q) is indicated for each subplot
Figure 5.3: (a) Comsol model for simulating whispering gallery modes. (b) Numerical shell
used for whispering gallery modes detection
Figure 5.4: Numerical estimation for the eigenwavelengths of whispering gallery modes62
Figure 5.5: Numerically calculated electric field distribution in the highest (a) and lowest (b)
eigenwavelengths modes
Figure 5.6: 602 nm modes (a) using Comsol numerical simulator and (B) by superposition of
the three degenerate modes.
Figure 5.7: (a) A schematic diagram for the TFSC under test, (b) HCP SiO ₂ nanospheres unit
cell
Figure 5.8: Numerical estimation for the eigenwavelengths of whispering gallery modes foe
silica nanospheres
Figure 5.9: (a) A cross-sectional schematic diagram for the TFSC under test with silica
nanosphere, (b) The normalized electric field and absorption across the structure cross
section
Figure 5.10: (a) The EQE and (b) the J-V charatarstic curve for a TFSC with and without
HCP silsica spheres
sandwiched TFSC, where d _{bn} is the diameter of the backside SiO ₂ nanospheres to be
optimized for maximum conversion effeciency.
Figure 5.12: Optimizing back-side spheres radius for maximum conversion effeciency66
Figure 5.13: The Enhancement in Absorption due to the back-side diffracting layer67
Figure 5.14: The J-V curve for TFSC under three different proposed structures for light
trapping67
Figure 6.1: Thermal evaporator setup: (a) vacuum chamber, (b) control pad and (c)
monitoring window:
Figure 6.2: Spin Coater [29]70
Figure 6.3 UV-VIS Spectrometer; (a) Input light source, (b) Light detectors, (c) Sample
holder, and (d) Optical fibers cable for reflectance measurements71
Figure 6.4: (a) Measuring Reflectance using three terminals fibres cable. (b) Measuring
Reflectance using source/detector setup. (c) Measuring the transmission72
Figure 6.5: (a) Dektak Profilometer and (b) Schematic diagram for the theory of operation of
73
Figure 6.6: Ag thin film thickness measurement using dektak by making a scratch in the
sample75
Figure 6.7: Measured reflectance results for thin film of Ag using UV-VIS spectrometer75
Figure 6.8: AFM picture for thin film of Ag (a) 3D view, (b) 2D view and a forward (c) and
backsword (d) topographical view76
Figure 6. 9: (a) UV-VIS setup with adding a collimating lens. (b) Reflectance measurement
for a Ag thin film layer with and without collimating lens
Figure 6. 10: Dektak thickness measurement for SiO ₂ thin film by making a scratch in the
sample78
Figure 6. 11: SiO ₂ thin film reflectance experimentally measured using UV-VIS
spectrometer

Figure 6.12: The Transmission spectra of 4 different HCP samples on BK7 glass using JPMC
method
Figure 6.13: The Transmission spectra of 3 HCP spheres samples using Wanga method80
Figure 6.14: The Transmission spectrum of HCP silica spheres monolayer sample no. SHP-
PB-022-01 using JPMC method with a wider spectral range
Figure 6.15: SEM images for Silica closed packaged nanospheres monolayer, figures a, c and
e are for SHP-PB-022-01 and figures b, d and f are for SHP-PB-024-0181
Figure 6.16: Different samples for 800 nm silica spheres on a glass substrate using different
H ₂ O-ethanol concentration in solvent82
Figure 6.17: SEM images for HCP silica spheres under various solvent concentration
showing low concentrated spheres samples with multi-layer deposition82
Figure 6.18: selected measurement and simulation transmission spectra for HCP 676 nm
silica spheres above 264 nm TiO ₂ thin film on BK7 glass substrate. Simulation is done using
LD fitting process83

List of Tables

Table 3.1 LD fitting parameters for Ag, ITO, Au, Al and ZnO	22
Table 3.2: LD fitting parameters for Si in the three sub-bands	25
Table 3.3: LD fitting parameters for Ge	25
Table 3.4: LD fitting parameters for GaAs in the three sub-bands	26
Table 4.1: LD coefficients for a-Si	40
Table 5.1: E and H components in both TE and TM modes	54
Table 5.2: E and H components in both TE and TM modes in spherical coordination	on system
	55
Table 5.3: Eigenwavelengths in TE modes	59
Table 6.1: Material nad additional equipment list	74
Table 6.2: Collimating Lens technical details [35].	76