

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.916

Effect of Inspiratory Muscles Training on Functional Capacity in Patients with Chronic Heart Failure

Thesis

Submitted in partial fulfillment of the requirement for Doctoral degree in Physical Therapy

By Abeer Ahmed Abdel- Hamed Fargaly

Assistant lecturer at Physical Therapy Department For Cardiopulmonary Disorders and Geriatrics

Faculty of Physical Therapy
Cairo University
2007

Supervisors

Prof.Dr. Azza Abd El-Aziz Abd El-Hady

Professor of physical therapy for cardiopulmonary disorders &geriatrics, Faculty of Physical Therapy, Cairo University

Prof.Dr. Zeinab Mohammed Helmy

Professor of physical therapy for cardiopulmonary disorders &geriatrics, Faculty of Physical Therapy, Cairo University

Prof.Dr .Hamdy Soliman Mahmoud

Consultant of Cardiology , National Heart Institute

Effect of inspiratory muscles training on functional capacity in patients with chronic heart failure /Abeer Ahmed Abdel-Hamed/ Supervisors: Prof .Dr. Azza Abd El-Aziz Abd El-Hady. Professor of physical therapy for cardiopulmonary disorders &geriatrics, Faculty of Physical Therapy ,Cairo University, Prof .Dr. Zeinab Mohammed Helmy, Professor of physical therapy for cardiopulmonary disorders &geriatrics, Faculty of Physical Therapy , Cairo University ,Prof.Dr .Hamdy Soliman Mahmoud ,Consultant of Cardiology ,National Heart Institute. Doctoral thesis P.T.,2006

Abstract

The aim of this study was to investigate the effect of inspiratory muscles training on parameters of functional capacity(VO2max and AT) in CHF. and to clarify other possible effects including; sympathetic overactivity and ventilatory function tests and gas exchanges during exercise. Forty male patients with chronic heart failure, Their ages ranges from 50-65 years old with EF ≤40% in stable condition. They were randomly divided into two equal groups: IMT, and control group. IMT group participated in inspiratoray muscle training program, three times a week for three months and control group received medical treatment only. The results showed a significant increase in the of VO2max, AT, and maximum oxygen pulse with significant reduction in VE the IMT group, over the control. While the parameters, peak work load ,and maximum heart rate ,were not significantly altered in both groups. Parameters of HRV, showed a significant increase in HF in the IMT group, with significant reduction of LF/HF where as their was no significant changes in LF with significant increase in the inspiratory muscle strength(MIP) and, rating of the perceived exertion(Borg scale) ,with a significant reduction in the resting cardiovascular parameters.

(Key Words: Chronic heart failure – Inspiratory muscle training – Functional capacity – Heart rate variability)

Dedication

To my parents for their support

To my husband for his help

To my children for their patience

ACKNOWLEDGMENT

First and above of the all, I would like to kneel Thank ALLAH, who provided me with the effort and patience to complete this work.

I would like to thank Prof .Dr. Azza Abd El-Aziz Abd El-Hady, Professor of physical therapy for Cardiopulmonary Disorders &Geriatrics, Faculty of Physical Therapy, Cairo University, for her great support and advice that give me the confidence and encouragement to start and complete this study.

My gratitude appreciation and deep thanks to Prof. Dr. Zeinab Mohammed Helmy, Professor of Physical Therapy for Cardiopulmonary Disorders, & Geriatrics. Faculty of physical Therapy, Cairo University, for her valuable advice, comments and kind supervision throughout the study.

I would like also to express my sincere thanks to **prof Dr**. **Hamdy Soliman mahmoud**, consultant of cardiology at National Heart Institute for his unlimited support and wise counsel.

I would like also to thank **Prof. Dr. Mustafa Hussein Gad,** Professor and head of physical Therapy unit at National Heart Institute, for his cooperation with me through the conduction of this work.

My deep appreciation and profound gratitude to **Dr/Hussam** Fawzy, cardiology specialist at National Heart Institute for his sincere help. I wish also to thank all the staff member of the Holter department at National Heart Institute

Special appreciation to all members of Physical Therapy unit at National Heart Institute for their help to conduct this work.

Words fail to express my deepest gratitude, and sincere thankfulness for prof. Dr. Hanan Ahmed Rushdy Dean of Faculty of Physical Fitness for Girls, Gezeera ,Helwan University. for her help and cooperation to conduct this work

Last but not least, special thanks for all patients participated in the study for their time, and cooperation through conducting of this work.

List of content

Content	Page
CHAPTER I:	
INTRODUCTION	1
Aim of the Work	3
Significance of the study	4
Chapter II: REVIEW OF LITERATURE	
I)Anatomical and physiological review of cardiopulmonary system	5
Anatomy and physiology of the heart	5
Anatomy of the diaphragm	6
Work of breathing	7
Mechanism of respiration	8
Cardiopulmonary pumps	9
Ventilation and Breathing control during exercise.	11
* Ventilation during exercise.	12
* Factors Control Breathing	15
II)Heart failure syndrome	19
Heart failure classifications	20
Systolic& Diastolic heart failure classification	20
Right and left heart failure classifications	23
Stage classification of Heart Failure	23
Symptomatic classification NYHA Classification	24
Ventilatory classification system(VC) in patient with heart failure	24
III)Respiratory instability in Chronic Heart Failure	26 .
1)Exertional dyspnea	26
Assessment & evaluation of dyspnea	38

i)Standard Measures	38
ii)Exertional measure	40
2)Cheyne-Stokes respiration	42
3)Central and obstructive sleep apnea	43
V)Decreased functional capacity in Chronic Heart Failure	44
VI)Respiratory instability and sympathetic dysfunction in CHF and	52
its measurement:	
Systolic dysfunction and parasympathetic withdrawal	50
Diastolic dysfunction and sympathetic activation.	51
Measurement of sympathetic dysfunction in chronic heart failure	55
1) Heart rate variability (HRV)	52
Definition	52
Physiological background	53
Measurement of HRV	53
1-Time domain methods	53
2-Frequancy domain methods	57
2)Muscle sympathetic nerve activity (MSNA)	61
3)Baroreflex Sensitivity	62
4)Cardiac and Total Body Norepinephrine	63
VI)Inspiratory muscle training	66
1)Modes of application	66
2) Role of respiratory training in sympathetic dysfunction	69
3)Role of respiratory training in functional capacity	71
CHAPTER III: SUBJECTS, MATERIAL & METHODS	74
Subjects	74
Instrumentation	75
Procedures and Methods	81
Statistical procedure	92

.

CHAPTER IV: RESULT	93
CHAPTER V: DISCUSSION	131
CHAPTER VI: SUMMARY AND CONCLUSION	143
RECOMMENDATION	146
REFERENCE	147
APPENDIX	161
ARABIC SUMMARY	

LIST OF FIGURES

N	Figures	Page
1	Anatomy of the Heart	6
2	Anatomy of the Diaphragm	7
3	Transition from diastolic abnormalities to diastolic heart failure	22
4	Left ventricular dysfunction and respiratory derangement	28
5	Efferent and Afferent Signals that Contribute to the Sensation of Dyspnea	30
6	Respiratory modulation of the cardiac rhythm	65
7	Relationship between depth of breathing and autonomic nervous system	70
	balance	76
8	Oxygen pro(Jager- Germany)cardiopulmonary exercise test unit	78
9	6732 Compact digital recorders	79
10	Spirometry system with shutter	80
11	IMT(Respironics-USA)	82
12	Ventilatory function test	84
13	Symptoms limited exercise test	86
14	Measurement of Maximum inspiratory pressure	88
15	Lead placement for the 3-channel recording	88
16	Lead placement and carrying the 3-channel recording	90
17	Inspiratory muscle training	91
18	Breathing calisthenics(A, B&C)	95
19	Demographic and clinical characteristics of the studied groups	98
20	Moon values of EVC recorded before and after among studied gloups	98
21	Mean values of MIP(cmH2o) recorded before and after among studied groups	
22	Moon values of VO2may recorded before and after among studied groups	102
23	Normalized of AT % recorded before and after among studied groups	102
24	Mean values of O2 pulse(ml) recorded before and after among studied	102
25	Mean values of exercise test load(w) recorded before and after among	103
26	studied groups Mean values of MHR(b/min) recorded before and after among studied	103
27	groups Mean values of VE(l/min) recorded before and after among studied	103
1	groups	106
28	Mean values of HF(Hz) recorded before and after among studied groups	106
29	Mean values of LF(Hz) recorded before and after among studied groups	106
30	The values of I E/UE recorded before and after among studied groups	109
31	Mean values of RHR(b/min) recorded before and after among studied	
32	Mean values of SBP(mmHg) recorded before and after among studied	109
33	groups Mean values of d BP(mmHg) recorded before and after among studied	109
34	groups Mean values of rating of perceived exertion(modified Borg scale)	110