# **NEONATAL SCREENING**

# Review

Submitted for partial fulfillment of the Master Degree in Pediatrics

By

#### **Omnia Salah Fawzy Mahmoud Al-Kadi**

M. B. B. Ch.

Supervised by

## **Prof. Dr. Mohammed N. EL-Barbary**

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

#### **Dr. Maha Hassan Mohammed**

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2009

## **CONTENTS**

| Title                                           | Page |
|-------------------------------------------------|------|
| List of abbreviations                           | I    |
| List of figures                                 | III  |
| List of tables                                  | IV   |
| Introduction and aim of the work                | 1    |
| Neonatal screening                              | 3    |
| History of neonatal screening                   | 5    |
| Tandem mass spectrometry                        | 6    |
| Screening special population                    | 12   |
| Bioethical considerations in neonatal screening | 14   |
| Neonatal genetic screening                      | 17   |
| Neonatal screening for IEMs                     | 21   |
| Neonatal screening for endocrinal disorders     | 56   |
| Neonatal screening for cystic fibrosis          | 63   |
| Screening for hematological disorders           | 66   |
| Screening for infectious agents                 | 75   |
| Neonatal hearing screening                      | 84   |
| Perinatal toxicology screening                  | 89   |
| Neonatal screening in Egypt                     | 94   |
| Neonatal screening in Europe and USA            | 98   |
| Neonatal screening in India                     | 100  |

| Page |
|------|
| 102  |
| 109  |
| 111  |
| 112  |
|      |
|      |

#### LIST OF ABBREVIATIONS

AABR : Automated Auditory Brainstem Response

AAP : American Academy of Pediatrics
AFLP : Acute Fatty Liver of Pregnancy

AFP : Alphafetoprotein

AIDS : Acquired Immunodeficiency Syndrome

AL : Argininosuccinic Acid Lyase

AOAE : Automated Otoacoustic Emissions
AS : Argininosuccinic Acid Synthetase

ASA : Argininosuccinic Acid

BCAA : Branched-Chain Amino Acids

BCKD : Branched-Chain α Ketoacid Dehydrogenase

BH4 : Tetrahydrobiopterin

BIA : Bacterial Inhibition Assay

BUN : Blood Urea Nitrogen

C/AT : carnitine/acylcarnitine translocase,
CAH : Congenital Adrenal Hyperplasia

CF : Cystic Fibrosis

CFTR : Cystic Fibrosis Transmembrane Conductance Regulator

CH : Congenital Hypothyroidism

CMV : Cytomegalovirus

CPS : Carbamyl Phosphate Synthetase CPT : Carnitine Palmitoyl Transferase

ECMO : Extracorporeal Membrane Oxygenation

ESI : Electrospray Ionisation
FAO : Fatty Acid Oxidation

FAOD : Fatty Acid Oxidation Disorders

G6PD : Glucose-6-Phosphate Dehydrogenase Deficiency

GA1,GA2: Glutaric Acidemia, Type 1 and Type 2

GSD : Glycogen Storage Disease

HHH : Hyperornithinemia, Hyperammonemia, Homocitrullinuria

HMG : 3-Hydroxy-3-Methylglutaryl

HMP : Hexose Monophosphate

HRSA : Health Resources and Services Administration

IDD : Iodine Deficiency DisordersIEMs : Inborn Errors of Metabolism

IgG-IFA : IgG Indirect Fluorescent-Antibody

IRT : Immunoreactive Trypsinogen

L/P : Lactate/Pyruvate Ratio

LCHAD : Long-Chain L-3-Hydroxyacyl CoA Dehydrogenase

LPI : Lysinuric Protein Intolerance

MCAD : Medium-Chain Acyl-CoA Dehydrogenase

MCC : 3-Methylcrotonyl CoA Carboxylase

MMA : Methylmalonic Acidemia
 MSUD : Maple Syrup Urine Disease
 NAGS : N-Acetyl Glutamate Synthase
 NICU : Newborn Intensive Care Unit
 OTC : Ornithine Transcarbamylase

PA : Propionic Acidemia

PAH : Phenylalanine Hydroxylase

PC : Pyruvate Carboxylase
PDH : Pyruvate Dehydrogenase

Phe : Phenylalanine PKU : Phenylketonuria

PPHN : Persistent Pulmonary Hypertension of the Newborn

RBC : Red Blood Cell

SCAD : Short-Chain Acyl-CoA Dehydrogenase

SCD : Sickle Cell Disease

SIDS : Sudden Infants Death Syndrome

SV : Simple VirilizingTFP : Trifunctional ProteinUCD : Urea Cycle Defects

VLCAD : Very-Long-Chain Acyl-CoA Dehydrogenase.

#### **LIST OF FIGURES**

| Figure      | Title                                                                                    | Page |
|-------------|------------------------------------------------------------------------------------------|------|
| Figure (1): | Basic scheme of an MS/MS analysis                                                        | 6    |
| Figure (2): | Approach to the investigation of neonatal metabolic acidosis                             | 18   |
| Figure (3): | Approach to neonatal hyperammonemia                                                      | 45   |
| Figure (4): | Approach to differential diagnosis of suspected urea cycle defect                        | 46   |
| Figure (5): | Defici G6PD catalyzes NADP+ to its reduced form, NADPH, in the pentose phosphate pathway | 55   |

#### **LIST OF TABLES**

| Figure            | Title                                                                              | Page |
|-------------------|------------------------------------------------------------------------------------|------|
| <b>Table (1):</b> | Some disorders that can be screened for by tandem MS                               | 8    |
| <b>Table (2):</b> | Familial associations to specific diseases                                         | 15   |
| Table (3):        | Inborn errors of metabolism associated with abnormal urine odor in newborns        | 18   |
| Table (4):        | Laboratory studies for a newborn suspected of having an inborn error of metabolism | 19   |
| <b>Table (5):</b> | Timing and Detection of Metabolic<br>Disorders Using Tandem Mass<br>Spectrometry   | 27   |
| <b>Table (6):</b> | Classes of G6PD Enzyme Variants                                                    | 55   |
| <b>Table (7):</b> | Clinical and hematologic features of the principal forms of thalassemia            | 58   |

#### INTRODUCTION

Most of genetic conditions screened for are rare diseases. One out of approximately 1,500 babies will be born with one of these conditions, many metabolic disorders are not recognized because of their rarity. Thousands of babies die each year of unexplained causes, such as sudden infant death syndrome (SIDS), up to 3% of babies diagnosed with SIDS actually died of metabolic disorders. The greatest problem with the recognition of inherited metabolic disease is thinking of them in the first place (Levy, 1998).

Newborn screening was one of the first and largest population based disease intervention program, these programs were initially designed to detect infants with possible inborn errors of metabolism. If screening is positive or results are unusual, additional testing is performed to confirm the diagnosis. After the diagnosis is confirmed medical interventions are initiated. Infants and children are then followed over time to confirm effectiveness of treatment. Lifelong services are essential to those infants and their families (*Pass et al., 2000*).

Early clinical signs of metabolic disorders are non specific and difficult to distinguish in infants. Some disorders are asymptomatic in the neonatal period and present later in life. These diseases mimic many other conditions; often the health care provider may not immediately identify them as the underlying etiology. In

some disorders there are no early symptoms at all (Banta-Wright & Steiner, 2003).

Except for hearing screening, all newborn screening tests are done using few drops of blood through pricking baby's heel. The same blood sample can be used to screen for 55 or more disorders. A blood specimen should be taken from every newborn before hospital release, usually at 24 to 48 hours of life. The American Academy of Pediatrics recommended that a repeat specimen be taken one to two weeks later. Babies born outside the hospital should have newborn screening tests done before the seventh day of life (American Academy of Pediatrics, 2003).

Recent scientific and technological advances are making pressure to expand the scope of newborn screening programs. The ability to examine DNA in the Guthrie specimen has opened up opportunities to screen for many disorders that previously were difficult to identify in the newborn, but these proposals also challenge our current perception of newborn screening programs (Levy, 2003).

#### AIM OF THE WORK:

To discuss in details the various methods used for neonatal screening and its importance in catching the affected newborns and beginning the treatment before symptoms occur.

#### **NEONATAL SCREENING**

Newborn screening is a wonderful example of preventive medicine pioneered by Dr. Robert Guthrie in the early 1960s. The blood testing of newborn for treatable disorders has become almost universal in developed countries (Wilcken, 2003).

This screening is intended to detect disorders that can result in early mortality or lifelong disability (*Chace et al.*, 1999).

Although the incidence of each specific disorder is rare, their collective importance is deemed to be of considerable public health significance (*Pandor et al.*, 2004).

Today, newborn screening programs provide services for detecting a variety of disorders that are amenable to pediatric clinical interventions established by specialists in biochemical genetics, endocrinology hematology, infectious disease or pulmonology (Mandle, 2002).

#### **National Standards for Newborn Screening:**

Screening newborn babies should fulfill the modified Wilson criteria:

- Clinically and biochemically well defined disorder.
- Known incidence in population

- Disorder associated with significant morbidity or mortality
- Available effective treatment
- Period before onset during which intervention improves outcome
- Ethical, safe and simple screening test
- Cost effectiveness of screening (Seymour et al., 1997).

# HISTORY OF NEONATAL SCREENING

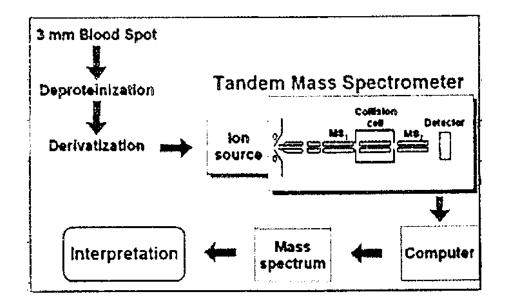
Dr. Robert Guthrie developed the first simple, sensitive, and inexpensive screening test for hyperphenylalanemia in 1962 (*Pass et al.*, 2000).

With this test phenylalanine, in blood dried on filter paper, inhibits bacterial growth (Brewer et al., 2000).

Prior to the Guthrie assay, a ferric chloride test was used to detect phenylalanine on wet diapers (*Pass et al.*, 2000).

Infants identified as having hyperphenylalanemia were treated with a low-phenylalanine diet. Dr. Guthrie discovered that with early identification and treatment, infants had normal cognitive development compared to untreated infants who developed severe mental retardation. (Brewer et al., 2000).

In the mid of 1960s, soon after this discovery, implementation the 1<sup>st</sup> universal newborn screening program, which at the time screened for only one disorder, hyperphenylalanemia *(Millington, 2003)*.


Soon newborn hyperphenylalanemia screening became available nationwide. Since then, technological advancements have led to an improvement in the number of disorders screened (Millington, 2003).

Screening for several metabolic disease, including galactosemia, Maple syrup urine disease and homocystinuria, was initiated by the late 1960s. In 1970s, screening and early treatment for congenital hypothyroidism was adopted to prevent intellectual disabilities. A few tests, including tests for adenosine deaminase deficiency and  $\alpha$ -1-antitrypsin deficiency were introduced in the 1970s but subsequently removed because clinical benefits were not apparent (*Brewer et al.*, 2000).

Newborn screening for sickle cell disease (SCD) and other hemoglobinopathies was introduced in 1970s but did not become widely adopted until after 1987. The recommendation for screening was based on evidence from a clinical trial that showed that antibiotic prophylaxis begun before 6 months of age could prevent most cases of pneumococcal sepsis in children with sickle cell anemia (Brewer et al., 2000).

#### TANDEM MASS SPECTROMETRY

Mass spectrometry is an analytical technique that is used to identify unknown compounds, quantify known materials, and elucidate the structural and physical properties of ions. A mass spectrometer is a device that separates and quantifies ions based on their mass to charge ratios (Fig. 1). Mass spectrometers measure weight (i.e. mass) electronically and display results in the form of mass spectrum. A mass spectrum is a graph that shows each specific molecule by weight and how much of each molecule is present. Tandem mass spectrometry, (MS/MS) is based on the use of two mass spectrometers connected in series by a chamber (known as a collision cell), which breaks down molecules into their constituent pieces. A sample is sorted and weighed in the first mass spectrometer, and fragmented within the collision cell, and then the pieces are further sorted and weighed in the second spectrometer (Pandor et al., 2004).



**Figure (1):** Basic scheme of an MS/MS analysis (Pandor et al., 2004).

Schematic representation of a tandem mass spectrometer: Ions formed in the ion source are transferred to MS1, filtered and passed on to the collision cell where they are accelerated and collide with an inert gas. The product ions are filtered by MS2 before being passed to the detector (*Pandor et al., 2004*).

Different types of mass spectrometer are available. One distinguishing feature of a MS/MS system is the way in which the compound is placed into the tandem MS [e.g. fast atom bombardment, liquid secondary ion, electrospray ionisation (ESI)]. The preferred type of sample introduction is by electrospray ionisation, as this allows a continuous flow approach. Therefore a single tandem mass instrument can process a large volume of specimens, through the use of an automated sampler (*Pandor et al.*, 2004).