

Synthesis, spectroscopic and thermal studies for ternary glutamate and other amino acids of divalent metal complexes and their effect on the metal weight loss inhibition.

Thesis submitted
By
Nadia Ahmed Soliman Ali
B.SC. (Chemistry) 2008
To

Chemistry department Faculty of Science Ain-Shams University

For The degree M.Sc. in Chemistry

As a partial fulfillments for requirements of Master of Science (2014)

Approval Sheet

Name of candidate: Nadia Ahmed Soliman Ali

Degree: M.Sc. Degree in Chemistry

Thesis Title: Synthesis, spectroscopic and thermal studies for ternary glutamate and other amnio acids of divalent metal complexes and their effect on the metal weight loss inhibition.

This Thesis has been approved by:

Dr. Eman H. Esmail

Assistant Professor of Inorganic and Analytical chemistry, Faculty of Science, Ain Shams University.

Dr.Dina .Y. sabry

Assistant Professor of Inorganic and Analytical chemistry, Faculty of Science, Ain Shams University.

Head of Chemistry Department **Prof. Dr.Ahmed Drbala**

Approval

First I do thank Allah the most merciful for his indefinite blessings

I am indebted to **Prof. Dr. Mostafa M. H. Khalil,** Professor of Inorganic and Analytical Chemistry,
Faculty of Science, Ain Shams University, for suggesting
the theme of this study, for the help and guidance he has
given during his supervision of this work and without
which fulfillment of this work would be impossible, for
helping and revising the whole manuscript.

I would like to express my deepest appreciation to **Dr**. **Eman H. Esmail** Assistant Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for offering me the opportunity to carry out this interesting research work under her kind supervision and guidance and for her helping me for writing the thesis.

Many thanks to **Dr.Dina** .**Y. sabry** Assistant Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for her help and supervising the practical work and for her guidance and support in writing the thesis.

Abstract

Thesis Title:

Synthesis, spectroscopic and thermal studies for ternary glutamate and other amnio acids of divalent metal complexes and their effect on the metal weight loss inhibition.

Name of candidate: Nadia Ahmed Soliman Ali

(Ternary complexes of Ni(II), Co (II), Cu(II), and Zn(II) with glutamic acid as a primary ligand and Nitrilotriacetic acid [HNTA²⁻] or alanine as a secondary ligand were synthesized in slightly acidic medium. Characterization of the new complexes were performed by elemental analysis, Fourier transform infrared, UV–Visible spectrophotometr, thermal analysis, magnetic measurements and mass spectroscopy. The complexes have been suggested to show geometry of an octahedral symmetry .The results indicated that the ternary complexes were isolated in 1:1:1 (M: glutamic: HNTA) ratios, and the molecular structures were suggested to Be [M(glutamic)(HNTA)(H₂O)].(2-1.5)H₂O and [M(glutamic)(alanine)(H₂O)₂].(1-0.5)H₂O.The prepared

complexes were used in weight loss studies of aluminim and copper plates, antimicrobial activities of the prepared complexes against *Escherichia coli, Staphylococcus aureus*, *Candida albicans* and *Aspergillus flavus* were investigated and evaluated for their *in vitro* anticancer activity against hepatocellular carcinoma.

Keywords

Ternary complexes, glutamic acid, NTA, alanine, Synthesis, Characterization, Biological study, hepatocellular carcinoma and the weight loss studies.

CONTENTS

List of figures	Ι
List of tables	VII
Abstract	IX
Summary	XI
Chapter 1: Introduction	1
1.1. Introduction	1
1.2 . Literature review	10
1.2.1. Glutamic acid and its complexes	11
1.2.2. Importance of amino acids and its	18
coordination	
1.2.2.1. Alanine	20
1.2.2.2. Nitrilotriacetic acid	22
Chapter 2: Experimental	34
2.1. chemicals	34
2.2. General procedure for Preparation of the	34
(1:1:1) metal glutamic acid and nitrilotriacetate	
and metal glutamic acid alanine ternary complexes	
2.3. Characterization of the complexes	35
2.3.1. Elemental analysis	35
2.3.2. IR spectra	36
2.3.3. UV- Visible spectra	36

2.3.3. Thermogravimetric analysis 2.3.4.	36
2.3.5. Mass spectra	36
2.3.6. Magnetic measurements	37
2.3.7. Cytotoxicity	37
2.3.8. Biological activities	
Chapter 3:	
Results and Discussion	
3.1.1.Elemental analysis and physical properties	
3.1.2: IR: Spectra :	44
3.1.3: FTIR OF Glutamic acid:	44
3.1.4: FTIR OF NTA:	47
3.2. : UV-Visible Spectra:	64
3.3. : Mass Spectra:	74
3.4 : Magnetic moment	75
3.5. Thermal Analysis:	85
3.6. Biological study	97
3.7. Cytotoxicity	102

Chapter 4:	115
Corrosion application(Weight loss studies.)	
4.1. Introduction	115
4:2:Experimntal	118
4-2-3.Results and discussion	121
Reference	135
Arabic Summary	151

List of Figures

Figure (no)	Figure name	Page
Figure (1)	Structure of [Co(urd) (L-Trp) (H ₂ O) ₂ Cl].	5
Figure (2)	structures of the ternary complexes of cobalt(II) with nitrilotriacetic acid and phthalic acid(P) or benzoic acid(B) as a secondary ligands.	8
Figure (3)	polymer microparticles	9
Figure (4)	Schematicstructure of L-glutamic acid	12
Figure (5)	Proposed structure of ternary M(II)- Glu-Uracil (1:1:1) complex where $M(II)$ = hexa coordinated metal ion The protonation constant	16
Figure (6)	Proposed structure of ternary Glu-M(II)-Uracil (1:1:1) complex where M(II) = tetra coordinated metal ion structure of the copper complexes with homocysteine and three amino acids(aspartate,glutamate and methionine).	19
Figure (7)	The proposed moleclura structure of [Sn(Ala-H) ₂	21
Figure (8)	[M(HNTA)(alaH)(H ₂ O)2]	22
Figure (9)	schematicstructure of NTA Nitrilotriacetic acid	23
Figure (10)	The expected octahedral structure of our prepared complexes: a) Metal –GLU-NTA complexes and (b) Metal-GLU-Ala complexes.	42
Figure (11)	FTIR spectrum of glutamic acid	45
Figure (12)	FTIR spectrum Nitrilotriacetic acid)	49
Figure (13)	FTIR spectrum alanine	51
Figure (14)	FTIR.spectrum of [Cu(NTA)(glutamic]complex	55
Figure (15)	FTIR spectrum of [Co:NTA: glutamic] complex	56
Figure (16)	FTIR spectrum of [Ni:NTA:glutamic] complex	57
Figure (17)	FTIR spectrum of [Zn:glutamic:NTA] complex	58
Figure (18)	FTIR spectrum of Cu:glutamic:alanine complex	59
Figure (19)	FTIR spectrum of [Co:glutamic:alanine] complex	60
Figure (20)	FTIR spectrum of [Ni:glutamic:alanine] complex	61
Figure (21)	FTIR spectrum of [Zn:glutamic:alanine]complex	62
Figure (22)	UV-Visible spectrum of the [Cu:glutamic: NTA] and [Cu:glutamic-alanine] complexes.	64
Figure (23)	Tanabe Sugano Diagram for d ⁸	67
Figure (24)	UV-Visible spectrum of the [Ni:glutamic: alanine] and [Ni:glutamic:NTA] complexes.	68
Figure (25)	Tanabe-Sugano Diagram for d^7	81

List of Figures

Figure (26)	UV-Visible spectrum of the Co: glutamic:NTA and[Co: glutamic:alanine] complexes.	72
Figure (27)	UV-Visible spectrum of theCo:glutamic: alanine and	80
Figure (28)	Mass spectrum of [Cu:glutamic:NTA]	76
Figure (29)	Mass spectrum of [Ni: glutamic:NTA]	77
Figure (30)	Mass spectrum of [Co:glutamic:NTA].	78
Figure (31)	Mass spectrum of [Zn: glutamic:NTA].	79
Figure (32)	Mass spectrum of [Cu:glutamic:NTA]	80
Figure (33)	Mass spectrum of [Ni:glutamic:NTA].	81
Figure (34)	Mass spectrum of [Co:glutamic:NTA]	82
Figure (35)	Mass spectrum of [Zn:glutamic:NTA] of Cu: glutamic:NTA comlex.	88
Figure (36)	TGA of [Co:glutamic NTA] complex.	89
Figure (37)	TGA of[Ni:glutamic:NTA] complex.	90
Figure (38)	TGA of [Cu: glutamic: NTA] complex.	91
Figure (39)	TGA of [Zn: glutamic: NTA] complex	92
Figure (40)	TGA of [Co:glutamic:alanine] complex.	93
Figure (41)	TGA of [Ni: glutamic:alanine] complex.	94
Figure (42)	TGA of: [Cu.glutamic: alanine] complex.	95
Figure (43)	TGA of [Zn:glutamic: alanine] complex.	96
Figure (44)	Microbial activity of metal complexes.	100
Figure (45)	Cell viability at different [NTA]concentrations.	103
Figure (46)	Cell viability at different [Glutamic] concentrations.	104
Figure (47)	Cell viability at different [(alanine)] concentrations.	105
Figure (48)	Cell viability at different	106
1 iguic (+0)	[Cu(glutamic)(NTA)]concentrations.	
Figure (49)	Cell viability at different [Co (glutam-	107
Tiguie (1))	ic)(NTA)]concentrations.	
Figure (50)	Cell viabilityat different [Zn (glutam-	108
118010 (50)	ic)(NTA)]concentrations.	
Figure (51)	Cell viability at different [Ni(glutamic)(alanine)] concen-	109
8 ()	trations.	110
Figure (52)	Cell viability at different [Co(glutamic)(alanine)] concentrations.	110
Figure (53)	Cell viability at different [Cu(glutamic)(alanine)] concentrations.	111
	Cell viability at different [Zn (glutam-	112
Figure (54)	ic)(alanine)]concentrations.	-

List of Figures

Figure (55)	Variation of inhibition efficiency of copper with different	122
	concentration of (Zn,Co,Cu andNi) (alanine.glutamic)) in	
	1M HCl at 30/c for 3 hrs	
	Variation of inhibition efficiency of Aluminium with dif-	124
Figure (56)	ferent concentration of (Zn,Co,Cu andNi) (ala-	
	nine:glutamic)) in 1M HCl at 30°c for 3 hrs	
	Variation of inhibition efficiency of copper with different	127
Figure (57)	con centration of (Zn,Co,Cu andNi) (NTA:glutamic)) in	
	1M HCl at 30 C° for 3 hrs	
Figure (58)	Variation of inhibition efficiency of copper with different	132
	concentration of (Zn,Co,Cu andNi) (alanine.glutamic)) in	
	1M HCl at 30/c for 3 hrs	

List of Tables

Table (1)	Elemental analysis of the 8 complexes	43
Table (2)	FTIR of glutamic in the range (400-4000)cm ⁻¹ .	44
Table (3)	FTIR of NTAin the range (400-4000)cm ⁻¹ .	48
Table (4)	FTIR of alanine in the range (400-4000)cm- ¹ .	50
Table (5)	The important infrared data of the ternary complexes.	54
Table (6)	The energy terms for the different triplet states of Nickel complexes.	66
Table (7)	The energy terms for the different quartet states of the cobalt complexes.	70
Table (8)	The MIP (molecular ion peak) values from mass spectra of the prepared ternary complexes.	74
Table(9)	Magnetic moment.	75
Table 10).	Temperature values for the decomposition along with the	86
Table(11)	species lost in each step.	00
Table (11)	biological activity of the ternary complexes.	99 103
Table. 12).	Cytotoxicityevaluation of our glutamic mixed ligand complexes.	103
Table (13)	Viablility percentage at different[NTA] concentrations.	104
Table(14)	Viability percentage at different [glutamic]concentraions.	105
Table(15).	Viability percentage at different[Cu((glu)(NTA)] concentrions.	106
Table(16).	Vibilty pecentage at different [Co(glut)(NTA) concentraions.	107
Table(17).	Vibilty pecentage at different [Zn(glut)(NTA)] concentraions.	108
Table(18)	Vibilty pecentage at different [Co(glut)(ala) concentraions.	109
Table(19)	Vibilty pecentage at different [Ni (glut)(ala) concentraions.	110
Table (20)	Viabilty percentage at different (Co(glu)(ala)concentraions.	111
Table(21)	Viabilty percentage at different[(Cu(glu)(ala)concentrations.	112
Table(22)	Viabilty percentage at different (Zn(glu)(ala)concentrations.	113
Table(23)	Corrosion parameters for copper in aqueous solution of 1M HCl in absence and presence of different concentration of metal complxes of group(2)[M(glu)(ala)] at 30 OC for 3 hrs.	123

Table(24)	Corrosion parameters for Aluminium in aqueous solution of 1M HCl in absence and presence of different concentration of (Zn,Co,Cu and Ni)[(glu)(ala)] at 30°c for 3hrs.	125
Table(25)	Corrosion parameters for copper metal in aqueous solution of 1M HCl in absence and presence of different concentration of metal complxes group(1) at 30 OC for 3 hrs.	128
Table(26)	Corrosion parameters for Aluminium in aqueous solution of 1M HCl in absence and presence of different concentration of metal complexes of group(1)[M(NTA) (glut)] at 30 0C for 3hrs.	133

Chapter 1 Introduction

1. 1. Introduction

The study of coordination compounds has received much attention in recent years. This interest was generated by the discovery of the anti-bacterial, -fungal and cancer activities of several coordination compounds. As a result, studies have been carried out on the structure and chemical behavior of several metal complexes (Chohan et al., 2006). Various in-vivo studies have shown that biologically active compounds become more bacteriostatic and carcinostatic upon chelation [Chohan et al., (2006) and Husseiny et al., (2008)]. Amino acids, which are also components of proteins, offer excellent ligands for binding to metal ions[(Zhang and Lippard., (2003) and Kostova., (2006)]. The properties of coordination compounds are influenced to a considerable extent by the nature and the oxidation state of the central metal atom. A method of studying this influence is by comparing the compounds method of studying this influence is by comparing the compounds Fromed by a series of metal atoms in a given oxidation state with a particular ligand [Komiyama etal., (2008))]. coordination compounds of amino acids, **Although** histidine[(Nomiya et al., 2000)] arginine, glutamic acid [Legler et al., (2001)] have been synthesized and their antimicrobial properties studied, little attention has been focused on hydrophobic amino acids, such as phenylalanine. Chelation of bulky ligands to metal cations reduces the Chapter 1 Introduction

polarity of the ion. Due to the glycolipophilic nature of the cell wall, an increase in the lipophilicity of a coordination compound enhances its ability to penetrate bacterial cell membrane.

A mixed ligand complex is regarded as a simplified chemical model for the enzyme-metal substrate complex fromed in the course of the enzymatic reaction with metal ion at the active center, As has been shown for the carboxypeptidase A-peptide complex, the electrostatic bonding between the coordinated ligands is certainly one of the important driving forces leading to the formation of mixed ligand complexes[Lips Comb., (1970) and Yamauchi et al., (1975)] suggesting that such electrostatic or hydrogen bondings exist between the oppositely charged groups in the side chains of the two ligands in several Cu(II) containing ternary systems and that they affect the formation of mixed ligand complexes.

An intensive number of studies on the formation of mixed ligand complexes reveal a realization of their growing importance, particularly in their role in biological process [Rao., (1994)]. The formation of mixed ligand chelates is a general feature of systems where a metal is present with two or more ligands. The study of these complexes shows that their formations are a favored process over that of simple complexes [Ramanujam and Krishnan., (1980)]. The study of ternary complexes involving an aromatic amine as the