MARKER-ASSISTED SELECTION FOR SALT STRESS AND QUALITY TRAITS IN SWEET SORGHUM (Sorghum bicolor)

BY KHALED ADLY MOHAMED KHALED

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1990 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1998

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
Agricultural Science
(Genetics)

Department of Genetics Faculty of Agriculture -Ain Shams University

MARKER-ASSISTED SELECTION FOR SALT STRESS AND QUALITY TRAITS IN SWEET SORGHUM (Sorghum bicolor)

BY KHALED ADLY MOHAMED KHALED

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1990M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1998

Under the supervision of:

Prof. Dr. Mohamed Abdel-Salam Rashed
Prof. Genetics, Department of Genetics, Faculty of Agriculture,
Ain Shams University (Principal supervisor)

Dr. Ahmed Fahmy Hussein Abo-Doma
Associate Professor of Genetics, Department of Genetics, Faculty
of Agriculture, Ain Shams University

Prof. Dr. Hamam Abdel-Karim EL-Rashedy Head of Research Emeritus, Sugar Crops Res. Inst., Agric. Res. Center, Giza, Egypt

Approval sheet

MARKER-ASSISTED SELECTION FOR SALT STRESS AND QUALITY TRAITS IN SWEET SORGHUM (Sorghum bicolor)

BY KHALED ADLY MOHAMED KHALED

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1990 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 1998

This thesis for Ph.D. degree has been approved by:
Prof. Dr. Abdel Hamid Abdel Hamid Ali Prof. of Genetics, Faculty of Agriculture, Kafr EL-Sheikh Tanta University
Prof. Dr. Fatthy Mohamed Abdel-Tawab Emeritus Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Mohamed Adel-Salam Rashed Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Date of Examination 24/ 07/ 2005

ACKNOWLEDGMENT

I wish to thank **Allah** who supported me with the strength and patience to complete this work.

The author wishes to express his deep gratitude and sincere appreciation to **Prof. Dr. Mohamed A. Rashed**, Professor and Head of Genetics Dept., Faculty of Agriculture, Ain Shams University for continuous supervision, kind encouragement, sincere help criticism and precious advices during the progress of thesis work and the preparation and writing of the manuscript.

Sincere appreciation is due to Dr. Ahmed Fahmy Hussein Abo-Doma, Associate Prof. of Genetics, Faculty of Agric., Ain Shams University, for his supervision, providing SSR primers and his efforts in writing and reviewing the manuscript.

Thanks are due to Prof. Dr. **Hamam A. ELrashedy,** Prof. of plant breeding, Sugar Crops Res. Inst.; Agric. Res. Center for his supervision and his efforts in writing and reviewing the manuscript.

Deep thanks to Prof. Dr. **Fatthy Mohamed Abdel-Tawab** Prof. of Genetics, Fac. of Agric. Ain Shams University, for his useful suggestions, continuous guidance throughout the course of this investigation.

Thanks are due to Prof. Dr. Ahmed Abo-Doh, Director of Sugar Crops Res. Inst. for his great help and encouragement.

Great thanks we due to all the staff members of Molecular pathology & Biotechnology Lab., Dept. Pests & Diseases, Sugar Crops Res. Inst., Agricultural Research Center for their great help and encouragement during this work.

Many thanks are extended to all the **staff members of Molecular Genetics Lab.**, Faculty of Agric., Ain Shams
University, for their great help and encouragement.

Finally, I am indebted as gift to **my wife and my children** for their great help and patience during this work and to **my mother** for here continuous encouragement and praying for me.

ABSTRACT

Khaled Adly Mohamed Khaled. Marker-Assisted Selection for Salinity Stress and Quality traits in Sweet Sorghum [Sorghum bicolor (L.) Moench], Department of Genetics, Faculty of Agriculture, Ain Shams University, 2005.

Eleven sorghum cultivars were screened to assess their salt tolerance based on some yield-related traits. Two sorghum cultivars were selected in which one of them was the most salt-sensitive (Atlas) and the other was the most salt-tolerant (Rex) according to their performance. Cross pollination was conducted between the two contrasting cultivars, Rex and Atlas to produce F_1 seeds. In order to study the nature of salt tolerance inheritance and segregation in F₂, self pollination was performed for F_1 plants to produce F_2 seeds. The F_2 seedlings were exposed to salinity stress (6000 ppm NaCl). The two extreme groups of F₂ individuals (salt tolerant and salt sensitive) were selected. The results showed that the effects of salt stress varied across the yield related traits in all cultivars, also yield related traits (total root length, root dry weight, shoot fresh weight, shoot dry weight, shoot\root ratio, total chlorophylls and plant height) were decreased by salt stress. Bulked segregant analysis was used to analyze DNA extracts with 20 random primers using RAPD-PCR and 15 pairs of SSR primers for the two contrasting parents, their F_1 and the two extreme F₂ groups (bulks of plants from each of tolerant and sensitive groups). SSR results were confirmed using the same primers with a limited subset of individual F₂ plants. Out of the 20 random primers, four primers gave polymorphism and developed molecular markers for salinity tolerance. These bands exhibited five positive molecular markers and three negative molecular markers. Three pairs of primers out of the fifteen SSR pairs produced scorable markers. Two positive molecular markers and two negative markers were detected.

The results indicated that RAPD and the SSR markers could be considered as reliable markers for the molecular detection of salinity tolerance in sweet sorghum [Sorghum bicolor (L.) Moench].

Key words:

Sorghum bicolor, salt stress, molecular markers, RAPD-PCR., SSR-PCR, marker- assisted selection

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Salt tolerance assessment	3
2. Molecular markers using PAPD-PCR	17
3. Molecular markers using SSR-PCR	26
III. MATERIALS AND METHODS	33
1. Materials	33
2. Methods	33
2.1. Salt tolerance assessment	33
2.2. Molecular markers	35
2.2.1. Randomly amplified polymorphic DNA (RAPD)	35
2.2.2. DNA Simple Sequence Repeats of the	
polymerase chain reaction (SSR-PCR)	39
2.2.2.1. Characterization of some loci controlling salt	
stress tolerance using SSR on the level of F ₂	
individual plants	39
IV. RESULTS AND DISCUSSION	41
1. Salt tolerance assessment	41
2. Molecular genetic markers	63
2.1. Randomly amplified polymorphic DNA of the	
polymerase chain reaction (RAPD- PCR)	63
2.2. DNA Simple Sequence Repeats of the	
polymerase chain reaction (SSR-PCR)	70
2.2.1. Bulked segregant analysis using SSR	71
2.2.2. Characterization of some loci controlling salt	
stress tolerance using SSR on the level of F ₂	
individual plants	76
V. SUMMARY	83
VI. REFERENCES	87

LIST OF TABLES

		Page
Table (1):	Code number, cultivar names and sources of	
	twenty-one sorghum cultivars	33
Table (2):	The composition of micronutrient solution	
	according to Hoagland nutrient solution	34
Table (3):	The composition of macronutrient solution	
	according to Hoagland nutrient solution	34
Table (4):	List of RAPD primers codes and their	
	nucleotide sequences	38
Table (5):	SSR primer-pairs codes, their sequences and	
,	their required annealing temperature for SSR-	
	PCR analysis	40
Table (6):	Means of shoot fresh weight (g) for the eleven	••
14010 (0).	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
		42
T-1-1- (7).	treatments (4000, 6000 and 10000 ppm)	42
Table (7):	Means of shoot dry weight for the eleven	
	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	45
Table (8):	Means of plant height (cm) for the eleven	
	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	47
Table (9):	Means of root dry weight (g) for the eleven	
, ,	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	49
Table (10):	Means of root lenght (cm) for the eleven	
(,,	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	51
Table (11):	Means of total chlorophylls (%) for the eleven	31
1 able (11):		
	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	

	treatments (4000, 6000 and 10000 ppm)	53
Table (12):	Means of Shoot: root ratio for the eleven	
	sorghum cultivars after 72 days from planting	
	under control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	55
Table (13):	Ranking of different sorghum cultivars means	
	for yield related attributes across salt	
	concentration treatments	56
Table (14):	The most tolerant F ₂ plants according to some	
	yield related traits	62
Table (15):	The most sensitive F_2 plants according to some	
	yield related traits	62
Table (16):	Banding patterns for the twenty RAPD primers	
	with the two parents, their subsequent F_1 and	
	two bulks of F ₂	64
Table (17):	RAPD markers for salinity tolerance produced	
	by four primers in the studied populations	67
Table (18):	Banding patterns for the fifteen pairs of SSR	
	primers with the two parents, their subsequent	
	F_1 and two bulks of F_2	73
Table (19):	SSR markers for salinity tolerance produced by	/ -
1 auto (13).	four primers in the studied populations	73
	Tour princes in the studied populations	13

LIST OF FIGURES

		Page
Figure (1):	Histogram for shoots fresh weight means	
	(g) of the seventeen sorghum cultivars	
	under control (0 ppm) and two salt stress	
	treatments (6000 and 10000 ppm)	43
Figure (2):	Histogram for shoots dry weight means	
	(g) of the seventeen sorghum cultivars	
	under control (0 ppm) and two salt stress	
	treatments (6000 and 10000 ppm)	44
Figure (3):	Histogram for plant height means (cm) of	
	the eleven sorghum cultivars under	
	control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	46
Figure (4):	Histogram for root dry weight means (g)	
	of the eleven sorghum cultivars under	
	control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	48
Figure (5):	Histogram for root length means (cm) of	
	the eleven sorghum cultivars under	
	control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	50
Figure (6):	Histogram for total chlorophylls means	
	(%) of the eleven sorghum cultivars under	
	control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	52
Figure (7):	•	
	the eleven sorghum cultivars under	
	control (0 ppm) and three salt stress	
	treatments (4000, 6000 and 10000 ppm)	54
Fgure (8):	The sensitive parent (Atlas)	58
Fgure (9):	The tolerant parent (Rex)	58
Figure (10):	Sensitive and tolerant F_2 plants	
Figure	RAPD products of primers (OP-A01, OP-	
(11-a):	A02, OP-A03, OP-A06 and OP-A09) for	

	tolerant parent, tolerant F_2 bulk, F_1 ,	
	sensitive parent and sensitive F ₂	68
	bulk	
Figure	RAPD products of primers (OP-A05,	
(11-b):	OP-A04, OP-A07, OP-B02 and OP-B04)	
	for tolerant parent, tolerant F_2 bulk, F_1 ,	
	sensitive parent and sensitive F_2 bulk	69
Figure	SSR products of primers (Xtxp04, Xtxp17	
(12-a):	and Xtxp19) for tolerant parent, tolerant	
	F_2 bulk, F_1 , sensitive parent and sensitive	
	F ₂ bulk	74
Figure	SSR products of primers (Xtxp06,	
(12-b):	Xtxp08, Xtxp01, Xtxp10 and Xtxp12) for	
	tolerant parent, tolerant F_2 bulk, F_1 ,	
	sensitive parent and sensitive F ₂ bulk	75
Figure	SSR products of primers (Xtxp1 and	
(10-a):	Xtxp10) for sensitive parent, sensitive F ₂	
	individuals, F_1 , tolerant parent and	
	tolerant F ₂ individuals	80
Figure	SSR products of primers (Xtxp6, Xtxp8	
(13-b):	and Xtxp12) for sensitive parent, sensitive	
	F_2 individuals, F_1 , tolerant parent and	
	-	81
Eigung	tolerant F_2 individuals	
Figure	SSR products of primers (Xtxp4, Xtxp17	
(13-c):	and Xtxp19) for sensitive parent, sensitive	
	F_2 individuals, F_1 , tolerant parent and	02
	tolerant F ₂ individuals	82

I. INTRODUCTION

[Sorghum bicolor (L.) Moench] has been used to produce concentrated syrup for food use. Interest in sweet sorghum has been especially important in areas of the world undergoing shortage of sugar. Sweet sorghum has also been widely used for forage and silage production for animal feed. Under both natural and agricultural conditions, plants are frequently exposed to stress, which is usually defined as an external factor exerting a disadvantageous influence on plant growth and development (Levitt, 1972). Water deficit, chilling and freezing, heat stress, salinity and oxygen deficiency are major stress factors restricting plant growth (Boyer, 1982; Salisbury and Ross, 1989). Some environmental factors (such as temperature) can become stressful in a few minutes; others may take days to weeks (soil water deficient) or even months (mineral nutrients) to become stressful.

Salinity can affect any process in the plant life cycle, so that tolerance will involve a complex interplay of characters. Many researchers investigated details of the physiology and biochemistry of salt tolerance and also looked at methods to screen overall plant performance that could be used in breeding programs. Plants are generally, relatively tolerant during germination but become more sensitive during emergence and early seedling stages of growth (Azhar and McNeilly, 1989; Abdel-Tawab et al., 1998b).

Molecular markers offer specific advantages in assessment of genetic diversity and in trait-specific crop improvement. Use of molecular markers in the applied breeding programs can facilitate appropriate choice of parents involved for crosses.

The detection of molecular markers linked to many genes of interest has been widely achieved .In this concern, RAPD as a simple and rapid procedure has gained a worldwide acceptance and application (**Paran** *et al.*, **1991**). Moreover, RAPD-PCR

markers were detected for salt stress in wheat and maize, as reported by Bahieldin et al., (1994); Abdel-Tawab et al., (2002) and in sorghum (Rashed et al., 2001). DNA simple sequence repeats (SSR or microsatellites) are numerous and highly polymorphic in plants (Morgante and Olivieri 1993; Saghai Maroof et al., 1994; Wang et al., 1994; Rongwen et al.; 1995 and Yang et al., 1995). The high information content of SSR makes them excellent genetic markers for many types of investigations, including marker-assisted selection. Michelmore et al. (1991) developed the bulked segregant analysis of F₂ plants as a simpler alternative to isogenic line analysis where the highest and lowest extremes of the F₂ population are bulked for the development of RAPD and SSR molecular markers needed for QTLs-assisted selection. Most of the detected linkages between marker loci and quantitative traits were shown to be highly significant (Edwards et al., 1987).

The objectives of this study were:

- **1-** To screen the responses of eleven sorghum cultivars (*Sorghum biocolor*) under salt stress treatments with respects to the performances of some yield-related traits.
- **2-** To select the most tolerant and the most sensitive cultivars to salt stress to be hybridized in order to obtain (F_1) plants, followed by selfing to obtain (F_2) plants.
- **3-** To study the effect of salt stress on the two contrasting cultivars and their F_1 and F_2 generations based on their performance some yield- related traits.
- **4-** To develop some molecular markers (RAPD and SSR) associated with salt tolerance in sorghum using bulked segregant analysis (BSA).
- **5-** To confirm the SSR results of bulked segregant analysis on a limited subset of F₂ individual plants.

II. REVIEW OF LITERATURE

1- Salt tolerance assessment

The concept of stress tolerance is defined as, the plant's fitness to cope with an unfavorable environment (Levitt, 1972; 1980). On the basis of their water requirements and adaptation to environmental stresses, plants are commonly characterized as xerophytes (drought-tolerant), halophytes (salt-tolerant) and glycophytes (stress-sensitive) (Barbour et al., 1987; Salisbury and Ross, 1989).

Water salinity is environmental stress factor that inhibits the growth and yield of glycophytic crop plants in many regions of the world (**Epstein 1985**, and **Cheesman 1988**). The precise mechanisms by which excessive salinity inhibits the growth of crop plants are still not fully understood, but may include osmotic effects as well as the direct toxicity caused by certain ions (**Cheesman 1988**).

Very similar mechanisms in stress tolerance have been observed in different plant species, supporting the theory that stress tolerance mechanisms are ubiquitous and that the advantages of halophytes may result from the more efficient performance of a few basic biochemical pathways (**Leopold** *et al.*, 1992; **Donoghue**, 1994 and **Bohnert** *et al.*, 1995).

Plant growth models may provide a method to integrate the complexities of plant responses to salt stress with the relevant environmental variables that interact with the measurement of tolerance. Models responsive to salt stress would provide insights for breeders and aid in developing more practical research on the physiological mechanisms of plant salt tolerance (**Shannon**, 1996).