Auditory Temporal Processing in Tinnitus Patients with Normal Hearing

Thesis
Submitted for the Partial Fulfillment of Master Degree
in Audiology

 $\mathcal{B}y$ Ahmed Abdullah Yousry Gamal Eldeen $_{\mathrm{M.B.B.Ch.}}$

Supervised by

Prof. Dr. Adel I. Abdel-Maksoud Nassar

Professor of Audiology, ENT Department Faculty of Medicine- Ain Shams University

Dr. Dalia Mohamed Hassan

Assistant Professor of Audiology, ENT Department Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain-Shams University 2016

سورة البقرة الآية: ٣٢

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Adel T. Abdel-Maksoud Nassar**, Professor of Audiology,

E.N.T. Department, Faculty of Medicine, Ain Shams

University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I would like also to express my deep gratitude to **Dr. Dalia Mohamed Hassan,** Assistant Professor of Audiology, E.N.T. Department, Faculty of Medicine, Ain Shams University for her generous help, guidance and patience through all stages of this work.

Ahmed Gamal DI-Deen

Contents

List of Abbreviations	I
List of Tables	III
List of Figures	VI
Introduction	1
Aims of the Work	4
Review of Literature	
• Chapter (1): Tinnitus classification, mechanisms	and
models	5
• Chapter (2): Tinnitus management	33
• Chapter (3): Tinnitus and auditory temporal prod	cessing. 59
Material & Methods	91
Results	103
Discussion	129
Conclusion	148
Recommendations	149
Summary	150
References	153
Arabic Summary	

List of Abbreviations

Abb.	Full term
ABR	Auditory brainstem response
AFT	Auditory fusion test
ASHA	American speech language association
c-ABR	Speech ABR
CANS	Central auditory nervous system
CBC	Complete blood count
CT	Computed topography
CV	Consonant-vowel
CVC	Consonant-vowel-consonant
dB	Decibel
dB SL	Decibel sensation level
DCN	Dorsal cochlear nucleus
DPOAEs	Distortion product otoacoustic emissions
DPT	Duration pattern test
EMEA	European Medicines Agency
Fo	Fundamental frequency
F1	First formant
FDA	Food and Drug Administration
FFR	Frequency following response
F-MRI	Functional magnetic resonance imaging
GIN	Gaps in noise
GPIAS	Gap pre-pulse inhibition of the acoustic startle reflex
HF	Higher formants

Abb.	Full term
IC	Inferior Colliculus
IHCs	Inner hair cells
IPI	Interpulse interval
ISI	Interstimulus interval
LLLT	Low level laser therapy
MCL	Most comfortable loudness
MGB	Medial geniculate body
MML	Minimal masking level
MMN	Mismatch negativity
MRI	Magnetic resonance imaging
Msec	Millisecond
MSN	Medullary somatosensory nuclei
NBN	Narrow band noise
NIHL	Noise induced hearing loss
NU-6	Northwestern university auditory test number 6 word lists
OAEs	Otoacoustic emissions
OHCs	Outer hair cells
PET	Positron emission tomography
PMF	Pitch match frequency
PPI	Pre-pulse inhibition
PTA	Pure tone audiometry
RGDT	Random gap detection test
RI	Residual inhibition
RISB	Rotter incomplete sentences blank
rTMS	Repetitive transcranial magnetic stimulation
SOAE	Spontaneous otoacoustic emissions
SPL	Sound pressure level

List of Abbreviations

Abb.	Full term
SRT	Speech reception threshold
SSRIs	Selective serotonin reuptake inhibitors
STSS	Subjective tinnitus severity scale
T.C.S.T	Time compressed speech test
TCA	Tricyclic antidepressants
TCQ	Tinnitus cognitions questionnaire
TEOAEs	Transient evoked otoacoustic emissions
THI	Tinnitus handicap inventory
THQ	Tinnitus handicap questionnaire
TMAS	Taylor manifest anxiety scale
TRQ	Tinnitus reaction questionnaire
TRT	Tinnitus retraining therapy
TSS	Tinnitus severity scale
UCL	Uncomfortable loudness level
VCN	Ventral cochlear nucleus
VOT	Voice onset time
WDS	Word discrimination score

List of Tables

Table	Title	Page
1	Mean, Standard deviation, t and p values of age	104
1	in years in the control and study groups.	
2	Sex distribution in the control and study	104
2	groups.	
	Mean, Standard deviation, t and p values of	105
3	pure tone audiometry thresholds in the control	
	and study groups.	
	Mean, Standard deviation, t and p values of	107
4	Speech reception thresholds (SRT) in the	
	control and study groups.	
	Distribution of study group subjects according	108
5	to the scores of self-assessment tinnitus	
	distress scale.	
6	Distribution of study group subjects according	109
U	to the tinnitus pitch match frequency (PMF).	
7	Distribution of study group subjects according	109
,	to the tinnitus pitch match frequency (PMF).	
8	Distribution of study group subjects according	110
0	to the tinnitus loudness.	
9	Distribution of study group subjects according	112
,	to the minimal masking level (MML).	
10	Distribution of study group subjects according	113
10	to residual inhibition (RI).	
	Percentage of identification of c-ABR waves in	114
11	the control group and tinnitus ears of the study	
	group.	
	Mean, Standard deviation, paired t test and p	115
12	values of c-ABR in both ears in the control	
	group.	

Table	Title	Page
	Mean, Standard deviation, paired t test and p	116
13	values of c-ABR in both ears in the study	
	group.	
	Mean, Standard deviation, t and p values of c-	117
14	ABR in the control group and tinnitus ears of	
	study group.	
	Mean, Standard deviation, range, t and p values	119
15	of auditory temporal processing tests in the	
15	control group and tinnitus ears of the study	
	group.	
	Percentage of abnormality of Auditory	120
16	temporal processing tests in tinnitus ears of	
	the study group.	
	Pearson's correlation coefficient showing the	121
17	effect of age, duration of tinnitus and tinnitus	
1,	distress scale scores on c-ABR in tinnitus ears	
	of the study group.	400
18	Effect of gender on c-ABR in tinnitus ears of	122
	the study group.	122
19	Effect of tinnitus laterality on c-ABR in the study group.	123
	Spearman's correlation coefficient between	124
	(BioMark score, VA slope and wave 0 latency)	124
20	and auditory temporal processing tests in	
	tinnitus ears of the study group.	
	Pearson's correlation coefficient between VA	125
21	area and auditory temporal processing tests in	
	tinnitus ears of the study group.	
	Spearman's correlation coefficient showing the	128
	effect of tinnitus duration and tinnitus distress	
22	scale scores on the auditory temporal	
	processing tests in the tinnitus ears of the	
	study group.	

List of Figures

Figure	Title	Page
1	Systematic of possible generation mechanisms	10
	of subjective tinnitus.	
2	Schematic diagram of suggested interaction	25
	between somatic and otic pathways.	
3	Graphic representation of the Jastreboff	28
	neurophysiological model of tinnitus.	
4	c-ABR collected from 30 years old female	99
	(from control group)	
5	Mean pure tone thresholds in the control and	106
	study groups (right ears).	
6	Mean pure tone thresholds in the control and	106
	study groups (left ears).	
7	Distribution of study group subjects according	108
	to the self-assessment tinnitus distress scale.	
8	Distribution of study group subjects according	110
	to the tinnitus pitch match frequency.	
9	Distribution of study group subjects according	111
	to tinnitus loudness.	
10	Distribution of study group subjects according	112
	to the minimal masking level (MML).	
11	Distribution of study group subjects according	113
	to RI.	
12	c-ABR collected from 30 years old female	118
	(from control group).	

List of Figures

Figure	Title	Page
13	c-ABR collected from 27 years old male	118
	tinnitus patient.	
14	Percentage of abnormality of auditory	120
	temporal processing tests in tinnitus ears of	
	the study group.	
15	Correlation between VA area and GIN	126
	threshold in tinnitus ears of the study group.	
16	Correlation between VA area and T.C.S.T 60%	126
	in tinnitus ears of the study group.	
17	Correlation between VA area and T.C.S.T 30%	127
	in tinnitus ears of the study group.	
18	Correlation between VA area and DPT in	127
	tinnitus ears of the study group.	

INTRODUCTION

Tinnitus is defined as the perception of a sound that results exclusively from within the nervous system without any corresponding mechanical, vibratory activity within the cochlea, and is not related to external stimulation of any kind (Jastreboff, 1995). Tinnitus represents a symptom of diverse pathologies and all levels of the nervous system, to varying degrees, are proposed to be involved in tinnitus manifestation (Jastreboff, 1990).

The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures (Henry et al., 2014).

Auditory temporal processing is one of the important auditory skills that are necessary for complex higher level auditory processing (Gilani et al., 2013). There is

Introduction

compelling evidence that temporal processing plays an important role in speech perception. Recently, the role of auditory temporal processing in tinnitus has been studied. Patients with tinnitus experience difficulty understanding degraded speech (Hass et al., 2012).

Studies on temporal processing in tinnitus patients involved mainly the psychophysical tests including Gap in Noise 'GIN' and Duration Pattern Tests 'DPT'. Hass et al. (2012) and Gilani et al. (2013) reported abnormal gaps in noise (GIN) test results reflecting auditory temporal resolution difficulties in patients with tinnitus. The deficits hypothesis is that that are demonstrated behaviorally in the temporal processing ability will also be seen in results of electrophysiological tests (Musiek and Gollegly's, 1988). A neurophysiological correlate of temporal processing deficit has been proposed in the speech-evoked auditory brainstem response (Nuttall et al., **2014**).

Speech-evoked brainstem responses faithfully represent many acoustic elements of the stimulus, including stimulus timing, fine structure (harmonics), and the fundamental frequency (Hornickel and Kraus, 2011). It is widely considered to provide an index of the quality of neural temporal encoding in the central auditory pathway

Introduction

and offers a quantitative evaluation of the auditory pathways at the rostral part of the brainstem. They are probably the most reliable of brainstem timing measures at this level (**Tahaei et al., 2014**).

To the authors' best knowledge, no published studies focused on the relationship between c-ABR and tinnitus. The present study was designed to evaluate auditory temporal processing ability in tinnitus patients objectively using c-ABR, and subjectively using the psychophysical auditory temporal processing tests. This might represent a step in understanding some of the underlying tinnitus mechanisms and their adverse effect on speech perception.

AIMS OF THE WORK

- 1- To study the psychophysical auditory temporal processing tests in tinnitus patients with normal hearing.
- 2- To explore the c-ABR measures in tinnitus patients with normal hearing.