Study of Electrical, Optical and Photoelectrical Properties of Noncrystalline Ge-Se-Te Semiconducting Films

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the physics department, faculty of science,

Ain shams university

By

Eman Mohamed El-Hanafy Abu El-Ekhlas

B. Sc. 199Y

Supervisors

Dr. Assem M. bakry

Prof. Assistant of Solid State Physics, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Fatma S. Terra

Prof. of Solid State Physics, Physics Department, National Research Center

Dr. Amaal F. El-Deeb

Physics Department, Faculty of Education, Ain Shams University

Master of Science Thesis

Student Name: Eman Mohamed El-Hanafy Abu El-Ekhlas

Thesis Title: Study of Electrical, Optical and
Photoelectrical Properties of
Noncrystalline
Ge-Se-Te Semiconducting Films

Degree: Master of Science

Supervising Committee

Dr./ Assem Mahmoud Bakry Prof. Dr./ Fatma El-Sayed Terra Dr./ Amaal Fawzi El-Deeb

Examining Committee

Prof. Dr/
Prof. Dr/
Prof. Dr/
Prof. Dr/
Graduate Studies:

Date of Research:
Seal of Approval
Thesis has been approved on: / / Y···
Faculty Council Approval
/ / Y···
/ Y···

Abstract

Chalcogenide glasses are attracting materials due to their application in solid state devices. Among these chalcogenide glasses there is the germanium – selenium – tellurium system is one of the most important compounds. Hence the study of these materials continues till the present time. Different bulk GeSe -xTex samples (x =and) were prepared using ice – water melting quenching technique under vacuum of Torr. X-ray diffraction analysis, XRD confirmed the amorphous structure of the prepared bulk ingot materials. Differential thermal analysis, DTA data was carried out of GeSe Te ingot material with different heating rates (, and K/ min). The glass temperature, T_g, the onset crystallization temperature, T_c the maximum crystallization temperature, T_p, and the melting temperature T_m were determined from the DTA curves. The activation energy of the glass transition, Eg, and that for crystallization, E_c, were determined by three different methods. The prepared ingot bulk materials were used for depositing GeSe _xTe_x thin films, fixing the film thickness and the other deposition parameters. Thermal evaporation technique under vacuum of torr was used. Films thickness and deposition rate were determined using quartz crystal thickness monitor, connected to the used Edwards Ecoating unit. X-ray diffraction, XRD, and energy dispersion X-ray analysis, EDAX, were carried out. The

amorphous structure of the prepared films was confirmed by XRD. The atomic percentage of the constituent elements Ge, Se and Te were identified from the EDAX. Optical transmission curves were obtained for all the prepared GeSe -xTex thin films). The envelope method was used for (x=and the analysis of the optical data. The absorption coefficient and, consequently the optical energy gap were determined It is found that there are allowed direct and indirect transitions. The refraction coefficient, n, the extinction coefficient, k, the real and imaginary parts of the dielectric constant ε_r , ε_i were determined in the wavelength range nm. The dependences of both the allowed direct and indirect energy gaps and the width of the tail states upon film composition were studied.. The variation of both the electrical conductivity and the thermoelectric power with temperature were investigated in the temperature range K. The conduction mechanism in these films were suggested from the conductivity – temperature curves. Both the conduction and the thermoelectric activation energies were determined from their variation with temperature. The relationships between the conduction and thermoelectric activation energies as a function of film composition were also studied. The variation of the density of charge carriers with temperature was obtained from the thermoelectric power variation with temperature. The a.c. photoconductivity at room temperature was studied for these films

using a tungsten lamp for illumination and a chopped light. The frequency dependence method of photoconductivity was used for this study, the life time (response time) was determined from such measurements. The variations of both the steady – state photoconductivity and the response time with film composition were studied.

Contents

List of Figures	Page i
List of Tables	vi
Acknowledgement	viii
	VIII
Abstract	1
Introduction	٤
Chapter 1: Survey and Theoretical Backgr	round
\\ Some Chemical and Physical Constants	
Density of States Distribution in Ge-Se-Te System	m ٦
۱٫۳ Previous Work	11
۱٫۳.۱ Electrical properties	
11	
1, ". Thermoelectric Power	
١٣	
۱.۳.۳ Hysterisis Behaviour of Electrical Conductiv	vity 10
1.٣.٤ A.C. Photoconductivity	
١٦	
۱.٤ Theoretical Background	
17	
1.4.1 Phase Diagram of Ge-Se-Te	١٧
1.4.7 Photoconductivity	١٨

۱.٤.۲,۱ Photoconductivty in Semiconductors
14
1.٤.٢.٢ Life Time of Non-Equilibrium Carriers
77
۱.٤.۲.۳ Relaxation of Non-Equilbrium Conductivity ۲
1. £. Y. £ Linear Recombination
1.2.7.0 Process of Generation of Non-Equilibrium
Carriers
۱. • The Optical Properties ۲
$^{\circ}$. Penetration Depth δ and Attenuation Coefficient α
٢٨
1.0.7 Physical Significance of the Optical Constants n and k 7
۱.۰. The Dielectric Constants
٣.
1.0.5 Interpretation of Optical Properties in terms of
Simplified Electron Band Structure
1.0.0 Definition of Tauc Optical gap (E _T)
۱.۰.٦ The Transmission and Reflection Factors
1.7 Relevant Studies of Ge-Se-Te Semiconductors
٤١
Chapter 7: Experimental Techniques
۲٫۱ Samples Preparation٤
۲,۱.۱ Preparation of Bulk Samples٤

Y, Y, Y Preparation of Thin	
Films	
Y,Y Thickness	
Measurements	
T,T, The Quartz Crystal Thickness Monitor	
Technique°	
۲,۲,۲ The Interferometric	
Methodor	
۲, ۳ Structural Identification of the Investigated	
Samples°	
۲,۳,۱ X-ray Diffraction	
(XRD)° ^γ	
۲,۳,۲ Energy Dispersive X-ray Analysis	
(EDX)°∧	
۲,۳.۳ Differential Thermal Analysis (DTA)	0/
۲,٤ DC Conductivity	
Measurements	
Y, o Thermoelectric Power Measurements	٦٢٦٢
Y,7 A.C Photoconductivity	۲۱
Y, Y The Optical	
Measurements	
Y, V, Y The Transmittance $T(\lambda)$ at Normal Light	
Incidence Y £	
Υ, V, Υ The Reflectance R (λ) at Normal light	
Incidence ^{Vo}	

Chapter 7: Results and Discussion	
۳,۱ Results of GeSe _{1-x} Te _x Bulk Samples	٧٩
۳,۱,۱ X- Ray Diffraction	٧٩
۳,۱,۲ Differential Thermal Analysis	
Studies^.	
T, Results of GeSe _{1-x} Te _x Thin	
Films٩١	
۳,۲,۱ Structural	
Investigations91	
۳.۲,۲ The Optical properties	٩١
T.Y.T Electrical conductivity	۱۰٤
۳.۲.٤ Thermoelectric	
power	
۳.۲.۰ Photoconductivity	
Chapter 4: Conclusion	
Conclusion	177
References	١٢٩
Thesis Arabic Summary	

List of Figures

Fig. (',') Four proposed density-of-states distribution(')
Fig. (۱,۲) Bonding in Ge and Se(^)
Fig (',") The phase digram of Ge Se Te(\)\(\)
Fig (1,5) The possible electron transitions with one type
of trap(۲۷)
Fig (',°) Schematic band structure diagrams for a metal
and semiconductor(٣١)
Fig (',') The relation between the reflectivity (R) and the
frequency in the visible spectrum(٣٣)
Fig (',') The variation of the optical reflection or
absorbance in a semiconductor with the frequency
of the incident light(٣٣)
Fig (',^) Classifications of the principal types of electron
transitions(٣٦)
Fig (', 9) Schematic diagram of (a) a thin film between two
seminfinite media, (b) a thin film on its substrate(ξ .)
Fig $(7,1)$ Block diagram of the bulk material preparation (ξ^{9})
Fig (۲,۲) (a) Schematic representation of the edge film,
(b) Multiple beam Fizeau Fringes system, and
(c) Fizeau Fringes(00)
Fig (۲,۳) A typical DTA thermogram illustrating the
definition of the different transition temperatures(oq)

Fig (۲, ٤) Sample electrodes (a) bulk sample and
(b) thin film sample(1.)
Fig (۲,0) Holder used for thermoelectric power
Measurements(٦٥)
Fig (۲,٦) D.C and a.c. circuits for photo conductivity,
measurements.
(a) Simple circuit for measuring the photoconductivity.
(b) Compensation circuit used for measurement.
(c) Measuring circuit using chopped light(٦٧)
Fig (۲,۷) Dependence of photoconductivity on chopped
Frequency
(a) Dark and light relaxation curves with $t_{\circ} < \tau$.
(b) Frequency dependence on photoconductivity(Y\)
Fig (۲,۸) Simplified optical; schematic (a) in the V case
and (b) in the W case(Y7)
Fig.(", '): X-ray diffraction pattern for the bulk
GeSe.,:Te., composition(٧٩).
Fig.(۲,۲) The DTA thermogram for the bulk sample(۱)
Fig. ($^{\gamma}$, $^{\gamma}$) The dependence of T_g on the heating
rate (α) for GeSe., ETe., chalcogenide glass(Λ^{γ}).
Fig.(r . $^{\xi}$) The plot of ln (α/T_{g}^{r})versus r $^{r}/T_{g}$ for GeSe., $^{\xi}$ Te., $^{\tau}$
chalcogenide glass(A٤)

Fig.($^{\circ}$. $^{\circ}$) The plot of $\ln \alpha$ versus $^{\circ} \cdot \cdot \cdot / T_g$ for GeSe., $^{\circ} Te$., $^{\circ}$
chalcogenide
glass(^o)
Fig.($^{\circ}$. $^{\circ}$) The plot of ln (α/T_g) versus $^{\circ} \cdots / T_g$ for
GeSe., Te., chalcogenide
glass(^\7)
Fig.($^{\vee}$. $^{\vee}$) Plot of $\ln (\alpha / T_p)$ versus $^{\vee} \cdot \cdot \cdot / T_p$ for
GeSe.,:Te., Chacogenide
glass(AY)
Fig.($^{\text{Y}}$. $^{\text{Y}}$) Plot of $\ln (\alpha / T_p)^{\text{Y}}$ versus $^{\text{Y}} \cdot \cdot \cdot / T_p$ for
GeSe., Te., chacogenide glass(AA)
Fig.($^{\circ}$. $^{\circ}$) Plot of $\ln \alpha$ versus $^{\circ} \cdot \cdot \cdot / T_p$ for GeSe., $^{\circ}$ Te., $^{\circ}$
chacogenide glass(A9)
Fig.(,) X-ray diffraction pattern for a representative
thin film sample(9.)
Fig.((7.11)) The EDX chart of GeSe _{1-x} Te _x films
(At $x=\cdot, \cdot \cdot$)(91)
Fig.(٣,١٢): The transmission spectrum of GeSe ₁₋
$_{x}T_{x}T_{x}$
Fig.($(7,17a-d)$) The plots of $(\alpha h v)^{'}$ versus hv for
$GeSe_{1-x}Te_x$ (95)
Fig.($(7,15a-d)$) The plots of $(\alpha h v)^{1/7}$ versus hv for $GeSe_{1-x}Te_x$.($9\circ$)
Fig. ($^{r, r_0}$) The variation of direct E_{gd} and indirect E_{gid}
optical Band gap with the Te content for GeSe _{1-x}

	Te _x films(9)	٦)
Fig.(۳,۱	⁷ a-d) The dependence of the absorption coefficient	
	(a) on the photon energy (hv) for GeSe _{1-x} Te _x (9	۸)
Fig. (۳۰	Y) The variation of the width of tail states with the	
	Te content (x at %) for $GeSe_{1-x} Te_x$	
films	(٩٩)	
Fig.() The variation of the refractive index with the	
	wavelength for $GeSe_{1-x}$ Te_x films()	•)
Fig.() The variation of the extinction coefficient with	
the way	relength for $GeSe_{1-x} Te_x$ films().	•)
Fig.(۳.۲	•) The variation of the real dielectric constant	
	with the wavelength for $GeSe_{1-x}$ Te_x films().	۲)
Fig.(۳.۲) The variation of the imaginary dielectric constant	
	with the wavelength for $GeSe_{1-x}$ Te_x films().	۲)
Fig.() The temperature dependence of the conductivity	
	for GeSe., Te., (a) temperature range	
	(700-10. k) and (b)temperature range	
	$(7) \cdot -17 \cdot k) \qquad (7)$	(۹
Fig.() The temperature dependence of the conductivity	
	for GeSe., ETe., (a) temperature range	
	$(\overset{\circ}{\circ} \overset{\circ}{\circ} \overset{\circ}{\circ} \overset{\circ}{\circ} K)$ and (b)temperature range	
	(۲۱۰-17• K)(۱۱	•)
Fig.() The temperature dependence of the conductivity	
	of GeSe. Te. v(a) temperature range (Too-17 · K))