RECENT PROGNOSTIC PARAMETERS IN ACUTE MYELOID LEUKEMIA AND THEIR RELATION TO CLINICAL OUTCOME

Essay

Submitted for partial fulfillment of M.Sc. Degree In Clinical and Chemical Pathology

Presented by

Botheina Ahmed Thabet Farweez

M.B., B. Ch., Ain Shams University

Supervised by

Prof. Dr. Salwa Mohamed Abu-El-Hana Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Dr. Iman Mohamed Amin Omar
Assistant Professor of Clinical and Chemical Pathology
Faculty of Medicine – Ain Shams University

Dr. Manal A. Shams El-Din Eltelbany
Assistant Professor of Clinical and Chemical Pathology
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2005

RECENT PROGNOSTIC PARAMETERS IN ACUTE MYELOID LEUKEMIA AND THEIR RELATION TO CLINICAL OUTCOME

Essay

Submitted for partial fulfillment of M.Sc. Degree In Clinical and Chemical Pathology

Presented by

Botheina Ahmed Thabet Farweez

M.B., B. Ch., Ain Shams University

Supervised by

Professor Doctor/ Salwa Mohamed Abu-El-Hana Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Professor Doctor/ Iman Mohamed Amin Omar Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor / Manal A. Shams El-Din Eltelbany
Assistant Professor of Clinical and Chemical Pathology
Faculty of Medicine — Ain Shams University

Faculty of Medicine Ain Shams University 2005

Acknowledgment

First of all, thanks to **Allah** the most merciful for guiding me through and giving me the strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, **Professor Doctor/ Salwa Mohamed Abu-El-Hana**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her continuous encouragement and valuable supervision and guidance throughout this work. It has been an honour and a privilege to work under her generous supervision.

Also, I wish to express my deep gratitude to **Professor Doctor/Iman Mohamed Amin Omar,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her kind support, help and careful supervision.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Doctor/Manal A. Shams El-Din Eltelbany**, Assistant Professor of Clinical and Chemical Pathology, Faculty of medicine, Ain Shams University, for her great help and support and her continuous guidance, correction and explanation. I wish to be able one day to return to her a part of what she had offered to me.

I also wish to extend my thanks to **Professor Doctor**/ **Ahmed Bastway,** Professor of Pharmacology, Faculty of Medicine, Ain Shams University, for his help in the presentation and support throughout this work.

No words could adequately express my deep appreciation to my family, especially my father for his continuous support and guidance. I shall remain indebted to them all my life.

Botheina Ahmed Thabet Farweez

CONTENTS

Page

List of Abbreviations	
List of Tables	
List of Figures	
Introduction and Aim of the Study	1
Acute myeloid leukemia	3
* Aetiology	4
* Leukemogenesis	5
* Classification of AML	9
* Diagnosis	22
* Classic prognostic criteria in AML	34
* Therapy	41
* Minimal residual disease	48
Cytogenetics and molecular genetics in AML	51
* Cytogenetics	51
* Molecular genetics	58
* Molecular and cytogenetic approach to AML	59
* Chromosomal abnormalities restricted to AML	64
* Chromosomal abnormalities characteristic of AML	
but seen in other myeloid disorders	73
* Techniques for diagnosis of cytogenetic and molecular	lar
abnormalities in AML	77
Recent prognostic criteria in AML	79
* Cell cycle	79
* Apoptosis	90
* Cytokines and cytokine receptors	102
* Adhesion molecules	109
* Signal transduction and transcription factors	111
* Angiogenesis	116

CONTENTS (Cont.)

	Page
* Marrow matrix metalloproteinase	119
* Drug resistance	121
* Other prognostic factors	125
- Wilm's tumor gene	125
- Neurofibromatosis 1 protein	126
- Telomerase	127
- Proliferative abilities in vitro	128
- Serum nm 23 H1 protein	129
- Deleted colorectal carcinoma gene	130
- Percentage of myeloperoxidase positive blasts	130
- Complete remission duration	130
Summary and Conclusion	131
References	133
Arabic Summary	

Special Dedication To:

My Mum

My Father

My Lovely Sister Yousra

My Brother Mohammed

My Be loving Husband Mostafa

List of Abbreviations

-5 : Monosomy 5 -7 : Monosomy 7

AIDS : Acquired immune deficiency syndrome

AKT : Protein kinase B, a serine / threonine specific

enzyme known as AKT

AL : Acute leukemia

ALL : Acute lymphoblastic leukemia

AML : Acute myeloid leukemia

Ang : Angiopoietin

ANLL : Acute non-lymphoblastic leukemia

AP : Acid phosphatase

Apaf-1 : Apoptotic protease activating factor

APL : Acute promyelocytic leukemia

ARF : Alternate reading frame

 AS_2O_3 : Arsenic trioxide

ATP : Adenosine tri-phosphate ATRA : All trans retinoic acid

BAALC : Brain and acute leukemia cytoplasmic gene

BAX : Bcl-2 associated protein

Bcl-2 : B-cell lymphoma/leukemia-2 oncogene

BCR : Break point cluster region
b-FGF : basic fibroblast growth factor
BMMC's : Bone marrow mononuclear cells
BMT : Bone marrow transplantation
BRCP : Breast cancer resistance protein

CAE : Chloroacetate esterase

CAK : CDK-activating kinase complex

CBC : Complete blood count CBF : Core binding factor

CBFα : Core binding factor alpha subunitCBFβ : Core binding factor beta subunit

CBP : Core binding protein

CD : Cluster of differentiation

CDK : Cyclin dependent kinase

CDKI : Cyclin dependent kinase inhibitor

cDNAs : Complementary DNAs

CEBPα : CAAT enhancer binding protein alphaCGH : Comparative genomic hybridization

CML : Chronic myeloid leukemia

C-mycCellular myelocytomaCNSCentral nervous systemCRComplete remission

CRD : Complete remission duration

CREB : C-AMP response element binding protein CBP

CRR : Complete remission rate
 CSF : Colony stimulating factor
 CSFs : Colony stimulating factors
 CXCR-4 : Chemokine receptor-4

DCC : Deleted colorectal carcinoma gene

del : deletion

DFS : Disease free survival

der : derivative

DIC : Disseminated intravascular coagulopathy

DNA : Deoxyribonucleic acid

Dup : Duplication

EFS : Event free survival

EGF : Epidermal growth factor

EM : Electron microscope

EMD : Erythroblastic and/or megakaryocytic dysplasia

ETO : Eight twenty one

EVI1 : Ectropic virus integration I gene

FA : Fanconi anemia

FAB : French-American BritishFADD : Fas-associated death domain

FAK : Focal adhesion kinase

Fas L : Fas-ligand

FISH : Fluorescence in-situ hybridization FLT₃ : Fms-like tyrosine kinase 3 receptor FLT₃-L : Fms-like tyrosine kinase 3 ligand

FS : Free survival
G0 : Gap phase zero
G1 : Gap phase one
G2 : Gap phase two

G-CSF : Granulocyte-monocyte colony stimulating factor

GIT : Gastrointestinal tract

GST : Glutathione-S-transferase

GSTM: Glutathione-S-transferase of mu class
GSTT: Glutathione-S-transferase of theta class

Hb : Hemoglobin

HDM-2 : Human homologue of the mouse MDM-2 protein

HIDAC : High dose Ara-c

HLA : Human leucocyte antigen

HSVtK : Herpes simplex virus thymidine kinase gene

IAPs : Inhibitors of apoptosis proteins

IL1β : Interleukin 1 beta
IL-3 : Interleukin-3
IL6 : Interleukin-6
ILS : Interleukins

INK4 : Inhibitors of cyclin dependent kinase 4

INF : Interferon Inv : Inversion

ITD : Internal tendem duplication

JM : Juxtamembrane

kDa : Kilodalton

LDH : Lactate dehydrogenase

LM : Light microscope

LN : Lymph node

LRP : Lung resistance protein

M-CSF : Macrophage-colony stimulating factor

MDR : Multi drug resistance

MDR-1 gene : Multi drug resistant gene MDS : Myelodysplastic syndrome

M-FISH : Multi-colour FISH

MIC : Morphologic-immunologic-cytogenetic

MLL : Mixed lineage leukemia gene

MMPS : Marrow matrix metalloproteinases

MoAb's : Monoclonal antibodies

MPD : Myeloproliferative disorderMPF : M-phase promoting factor

M-phase : Mitotic phaseMPO : Myeloperoxidase

MRD : Minimal residual disease

m-RNA : Messenger RNA

MRP : Multiple drug resistance related protein

MVP : Major vault protein

MYHII : Smooth muscle myosin heavy chain

NFI : Neurofibromatosis INK : Natural killer cellNSE : Non specific esterase

OS : Overall survival

P : Short arm of the chromosome

p21 : Protein 21 kDa p53 : Protein 53 kDa

PAS : Periodic acid schiff

PBSC : Peripheral blood stem cell
PCR : Polymerase chain reaction
PDGF : Platelet derived growth factor

P-gp : P-glycoprotein PLCγ : Phospholipase C γ

PLZF : Promyelocytic leukemia zinc finger

PML : Promyelocytic leukemia

PRB : Phosphorylated retinoblastoma
PRINS : Primed in-situ hybridization
PTD : Partial tandem duplication
q : Long arm of the chromosome
RARA : Retinoic acid receptor alpha
RAS-GAP : RAS GTpase-activating protein

Rb : Retinoblastoma
RIA : Radioimmunoassay
RNA : Ribonucleic acid
RO-PCR : Real time PCR

RTKs : Receptor tyrosine kinases

RT-PCR : Reverse transcriptase-polymerase chain reaction

S-phase : Synthetic phase
SBB : Sudan black-B
SCF : Stem cell factor
sE : Soluble E-selectin

SHGF : Soluble hepatocyte growth factor

SKY : Spectral karyotyping sL : Soluble L-selectin sNRP1 : Soluble neuropilin 1

SOCS : Suppressors of cytokines signaling

SOS : Son of sevenless guanine nucleotide exchange

factor

STAT : Signal transducer and activator of transcription

proteins

t : Translocation

TA : Telomerase activity

TdT : Terminal deoxynucleotide transferase

TGF- β : Transforming growth factor-beta

TIMPS : Tissue inhibitors of metalloproteinases

TLC : Total leucocytic countTNF : Tumor necrosis factorTSG : Tumor suppressor gene

VEGF : Vascular endothelial growth factor

VEGFR : Vascular endothelial growth factor receptors

WAF : Wild type p53 activated fragment 1

WBC's : White blood cells

WHO : World Health Organization

Wt-1 : Wilim's tumor 1 gene

List of Figures

Figure	Subject	Page
(1)	Branching network of genes involved in chromosome translocations.	6
(2)	Flow chart showing how individual patients	15
	are categorized in the WHO classification.	
(3)	Phases of therapy.	42
(4)	Standard regimen for treatment of newly diagnosed AML.	43
(5)	Deletion of the chromosome may be interstitial or terminal.	56
(6)	Inversion of the chromosome may be paracenteric or pericenteric.	57
(7)	A diagrammatic representation of t(8;21) (q21;q22) abnormality.	65
(8)	A diagrammatic representation of the t(15;17) (q22;q21) abnormality.	67
(9)	A diagrammatic representation of inv(16) (p13q22).	69
(10)	A diagrammatic representation of t(8;16) (p11;p13).	72
(11)	A diagrammatic representation of t(6,9) (q23;q34).	75
(12)	Life cycle of a somatic cell.	80
(13)	Phases of mitosis.	81
(14)	Cell cycle control systems.	82
(15)	The interactions between the cyclins, CDKs and CDKIs during the cell cycle.	83
(16)	Specific cyclins are synthesized and degraded at specific stages of the cell cycle.	85
(17)	CDKI proteins.	87
(18)	The INK4A/ARF locus.	89
(19)	Pathways of apoptosis.	91

List of Figures (Cont.)

Figure	Subject	Page
(20)	Induction of p53-dependent cell cycle arrest	95
	and apoptosis following DNA damage.	
(21)	Activation of multiple signal transduction	112
	pathways consequent to tyrosine	
	phosphorylation of growth factor receptors.	
(22)	Activation of the p21 ^{RAS} initiated signaling	113
	cascade following tyrosine phosphorylation	
	of growth factor receptors.	
(23)	Model of regulation of specific gene	115
	expression by a transcription factor.	

List of Tables

Table	Subject	Page
(1)	Conditions predisposing to the development	4
	of acute myelogeneus leukemia.	
(2)	Most common frequent genetic abnormalities	7
	in AML and related oncogenes.	
(3)	Morphologic (FAB) classification of AML.	11
(4)	MIC classification of AML.	12
(5)	The WHO classification of AML.	13
(6)	The WHO classification-AML not otherwise	14
	categorized.	
(7)	Characteristics of AML associated with	17
	rearrangement of the RARA gene.	
(8)	Translocations and deletions involving 11q23	18
(9)	Score for biphenotypic acute leukemia.	21
(10)	Signs and symptoms at presentation in AML.	23
(11)	Cytochemical stains used for diagnosis of	27
	AML.	
(12)	Panel of monoclonal antibodies identifying	28
	antigens expressed mainly in myeloid cells.	
(13)	Pattern of reactivity with monoclonal or	30
	polyclonal antibodies commonly observed in	
	FAB categories of AML.	
(14)	Associations between specific chromosome	32
	aberrations and FAB subtypes of AML.	
(15)	Prognostic factors in acute myeloid leukemia.	35
(16)	Methods for the detection of MRD in AML.	50
(17)	Numerical abnormalities in AML.	54
(18)	Structural chromosomal abnormalities in	55
	AML.	
(19)	Molecular markers additional to cytogenetics	59
	with independent prognostic significance for	
	remission duration or survival in AML.	