Comparative study between Bifrontal Approach and Frontolateral Minicraniotomy in the Management of Olfactory Groove Meningiomas

Thesis

Submitted for Partial Fulfillment of the Requirement for the MD Degree in Neurosurgery

By

Ibrahim Abd-El Mohsen Abd-El-Naiem

M.B.,B.Ch, M.Sc. Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Hosam Mohamed El-Huseiny

Professor of Neurosurgery Department Faculty of Medicine – Ain Shams University

Prof. Dr. Mohamed Sayed Ismaiel

Professor of Neurosurgery
Faculty of Medicine – Ain Shams University

Prof. Dr. Khaled Mohamed El-Bahy

Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Dr. Khaled Mohamed Saoud

Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2014

بِسْمِ اللَّهِ الرّحمَٰنِ الرّحيمِ

اَلِنْتَ اِبْمِهِٰ وَعَلَيْ وَعَلَى وَالْدِيَّ الْنِي اَنْمُهُٰ وَعَلَى وَالْدِيَّ لَا اللَّهِ الْفَالِدُيَّ ال

أَرْ تُومِانِكَ فِي غَالِهِ لَا يُرْضَاكُ الصَّالِطُا إِرْضَاكُ الصَّالِكِ أَنْ غَالَمُ الْمُالِكُ الْمُالِكُ ا

صدق الله العظيم

النمل.. اية رقم ١٩

Acknowledgments

First of all, thanks to **ALLAH** for giving me the strength to complete this work.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Hosam Mohamed El-Huseiny,** for his mentorship, wonderful gustiness, keen interest, beneficial advice, constant personal and scientific support; I have the honor to complete this work under his supervision.

My extreme thanks and gratefulness to **Prof. Dr. Mohamed Sayed Ismaiel,** Professor of Neurosurgery, Faculty of Medicine – Ain Shams University, for his kind guidance and supervision on this work and throughout my career.

I am also grateful to **Prof. Dr. Khaled Mohamed El-Bahy,** Professor of Neurosurgery, Faculty of Medicine – Ain Shams University, for dedicating so much of his precious time and effort to complete this work throughout all stages.

My great thanks to. **Dr. Khaled Mohamed Saoud,** Assistant Professor of Neurosurgery, Faculty of Medicine – Ain Shams University, for his supervision, review of the work, and his kind advises also for his continuous encouragement and kindness.

Last but not least, I can't forget to thank all members, Professor, colleagues and junior staff in Neurosurgery Department, Faculty of Medicine, Ain Shams University, for their cooperation and encouragement to accomplish this work.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	
Aim of the Work	4
Review of Literature	
- Anatomy	5
- Pathology	36
- Clinical Presentation.	50
- Investigations	56
- Surgical Approaches	67
- Adjuvant Therapy, Recurrence and Outcome.	93
Patients and Methods	101
Results	111
Case Presentation	
Discussion	147
Summary	159
References	
Arabic summary	<u> </u>

List of Abbreviations

ACA : Anterior cerebral artery

AComA : Anterior communicating artery

CBC : Complete blood picture

ADC : Apparent diffusion coefficient

CSF : Cerebrospinal fluid

CT : Computed tomography

DVT : Deep venous thrombosis

EMA : Epithelial membrane antigen

ER : Estrogen receptors

FLAIR : Fluid-attenuated inversion-recovery

HPFs : High power fields

ICA : Internal carotid artery

ICP : Intracranial pressure

ICU : Intensive care unit

MRI : Magnetic Resonance Imaging

MRS : Magnetic resonance spectrography

NAA : N-acetylaspartate

PR : Progesterone receptors

PXR : Plain roentgenograms

SD : Standard deviation

STA : Superficial temporal artery

WHO : World Health Organization

List of Tables

Table N	o. Eitle	Page No.
Table (1):	2007 World Health Organization Menin Classification	_
Table (2):	Simpson Grading system for removal o meningiomas	
Table (3):	Age distribution	111
Table (4):	Sex distribution	112
Table (5):	Preoperative anosmia	113
Table (6):	Preoperative headache	114
Table (7):	Preoperative behavioral changes	115
Table (8):	Preoperative mental status.	116
Table (9):	Preoperative paplledema	117
Table (10)	: Preoperative seizures	118
Table (11)	: Incidental discovery.	118
Table (12)	: Postoperative behavioral changes	120
Table (13)	: Postoperative CSF leak (Rhinorrhea)	122
Table (14)	Postoperative hemorrhage	124
Table (15)	Degree of resection.	126
	Postoperative mortality	
	Recurrence rate.	

List of Figures

Figure V	lo. Title Page T	No.
Figure (1):	Muscles of the face, anterior view showing the frontal belly of occipitofrontalis, corrugator supercilli and	
Figure (2):	Photograph of anatomical dissection of cadaveric temporal muscle demonstrating the four different components.	
Figure (3):	Dural septa	
Figure (4):	Artist's drawing illustrating the dissection of fat layer	
0 ()	behind the zygomatic arch	13
Figure (5):	Superior view. The dura covering the cerebrum has been removed to expose the cortical veins entering the superior sagittal sinus. The branches of the left anterior and middle cerebral arteries have been	
	preserved	16
Figure (6):	Skull, anterior view	18
Figure (7):	Anterior view of paranasal sinuses	19
Figure (8):	Superior and anterior views of ethmoid bone	
Figure (9):	Temporal fossa	22
Figure (10):	The orbit, anterior view	23
Figure (11):	The endocranial surface, the anterior and middle cranial base corresponds to the anterior and middle	
	fossae	
Figure (12):	Orbital surface of the frontal lobe	26
Figure (13):	Anterior view shows both A1 segments and relation	
T! (1.4)	to optic nerves and chiasm	27
Figure (14):	Drawing of anterior cerebral artery dissected from the	20
F: (15)	cerebral hemisphere	
Figure (15):	The ophthalmic artery relations and branches	
Figure (16):	Veins of the basal surface of the frontal lobe	32
Figure (17):	Olfactory system (basal view) together the olfactory	22
Figure (18):	bulbs, tracts, striae and anterior olfactory nucleus Superior view of the sellar region	

Figure V	lo. Eitle Page No.	:
Figure (19):	Hypothalamic nuclei35	5
Figure (20):	A huge olfactory groove meningioma38	
Figure (21):	Meningothelial meningioma with intranuclear	
	inclusions40)
Figure (22):	Gross appearance of a fibrous meningioma showing	
	the external aspect on the left and a cross-sectional	
	appearance on the right41	1
Figure (23):	Microcystic meningioma with intercellular spaces and	
	scattered pleomorphic nuclei42	2
Figure (24):	Secretory meningioma with carcinoembryonic antigen-	
	positive pseudopsammoma bodies42	2
Figure (25):	Metaplastic meningioma with osseous metaplasia43	3
Figure (26):	Chordoid meningioma with eosinophilic cells in a	
	mucinous background 44	1
Figure (27):	Papillary meningioma with perivascular rosettes and	
	papillary formation46	5
Figure (28):	Magnetic resonance scans from a patient with a large	
	esthesioneuroblastoma shows tumor extending through	
	cribriform plate48	3
Figure (29):	Contrasted coronal and axial cuts showing juvenile	
	nasopharyngeal angiofibroma49)
Figure (30):	Types of visual field defects55	5
Figure (31):	Axial CT scan with contrast showing a small olfactory	
	groove meningioma58	3
Figure (32):	Sagittal CT at bone window settings identifies hyperos-	
	tosis of the anterior skull base58	3
Figure (33):		
	extension59)
Figure (34):		
	imaging identifies encasement of the A2 segments of the	_
	anterior cerebral arteries60)

Figure V	lo. Eitle	Page C	No.
Figure (35):	Coronal T1 postgadolinium (A) and sa pregadolinium (B) MR images of a large groove meningioma.	olfactory	61
Figure (36):	Sphenoid wing meningioma with its correspond		
Figure (37):	Magnetic resonance venogram de		
0 ,	absent/decreased flow in the sagittal sinus		63
Figure (38):	Angiogram demonstrating shifting of periccallo	sal arteries	
	by an olfactory groove meningioma		64
Figure (39):	Reduced diffusion is seen within this rig	ht frontal	
	convexity atypical meningioma		66
Figure (40):	Illustration of the cranium showing the fro	ontolateral	
	approach.		67
Figure (41):	Eyebrow incision		68
Figure (42):	Semicoronal incision behind the hairline		69
Figure (43):	Free dural flap hitched by two sutures		70
Figure (44):	Intraoperative picture with appearance of benerves left ICA and planum sphenoidale	-	
	frontolateral approach		71
Figure (45):	A bicoronal incision is made 2 to 3 cm bhairline		74
Figure (46):	A vascularized galeal-periosteal flap is prepa		
Figure (47):	A slightly curved dural opening is made		
	hemispheres, the anterior sagittal sinus is liga		78
Figure (48):	Technique of separation of the tumor capsule		
	subfrontal cortex after devascularization and debulking		80
Figure (40).	Intraoperative view following resection of		60
Figure (47).	olfactory groove meningioma.		82
Figure (50):	Drawing shows the bony extension in pterional		02
1 15u1 c (50).	needed to access olfactory groove meningioma.		85
Figure (51):	Lateral view of the carotid artery, optic nerve		
•	Photograph showing the site of the craniotomy		
<i>a</i> - (-)*	<i>C</i> 1		

Figure N	o. Eitle Page No.
Figure (53):	Fronto-orbital approach89
Figure (54):	Photograph demonstrates an incisional line at the nasal
	bridge90
Figure (55):	Endoscopic transglabellar approach92
Figure (56):	Plain x ray showing the craniotomy done in fronto-lateral
	approach103
Figure (57):	Position and incision line in bifrontal approach106
Figure (58):	Age distribution111
Figure (59):	Sex distribution
Figure (60):	Distribution of preoperative anosmia113
Figure (61):	Distribution preoperative headache114
Figure (62):	Distribution of preoperative behavioral changes115
Figure (63):	Distribution of preoperative mental status116
Figure (64):	Distribution of preoperative papilledema117
Figure (65):	Distribution of preoperative seizures118
Figure (66):	Incidental discovery
Figure (67):	Distribution of postoperative behavioral changes120
Figure (68):	Distribution of postoperative CSF leak122
Figure (69):	Distribution of postoperative hemorrhage124
Figure (70):	Degree of resection
Figure (71):	Postoperative mortality
Figure (72):	Recurrence rate
Figure (73):	Preoperative and postoperarive T1 (6 months)
	contrasted MRI brain axial, coronal and sagittal cuts131
Figure (74):	24 hours postoperative CT brain
Figure (75):	Preoperative and postoperative (2 years) T1 contrasted
	MRI brain axial, coronal and sagittal cuts134
Figure (76):	24 hours postoperative CT brain
Figure (77):	Preoperative contrasted T1 axial and coronal MRI cuts
	with the corresponding postoperative CT scan138
Figure (78):	Preoperative and postoperative (6 months) T1
	contrasted MRI brain axial, sagittal and coronal cuts140

Figure V	lo. Eitle Page	No.
Figure (79):	24 hours postoperative CT brain	140
Figure (80):	Preoperative T1 contrasted MRI brain axial, sagitta	al
	and coronal cuts	143
Figure (81):	24 hours postoperative CT brain showing surgical	
	hematoma	144
Figure (82):	Preoperative T1 contrasted MRI brain axial cut	144
Figure (83):	(a, b). (a) Preoperative axial T2-weighted MRI showing	ng
	large olfactory groove meningioma (group B) with	th
	anterior cerebral artery encasement (black arrowhead). (l	b)
	Postoperative axial T1-weighted showing a small remnar	nt
	of tumor capsule left behind attached to the anterior	or
	cerebral artery (black arrowhead)	146

Introduction

presumed to develop from the arachnoidal cap cells. They account for approximately 20% of all primary intracranial tumors (*Tuna et al.*, 2005).

The occurrence of meningiomas in the general population varies from 2.3 cases per 100,000 people during their life span to 5.5 per 100,000 if autopsy data are included (*Al-Mefty et al.*, 2011).

Of all intracranial meningiomas, 10% arise from the olfactory groove. Olfactory groove meningiomas develop at the dura of the anterior cranial fossa over the cribriform plate and the planum sphenoidale. These tumors usually receive their blood supply from the anterior and posterior ethmoidal arteries (*Tuna et al.*, 2005).

Several surgical series regarding olfactory groove meningiomas have been published. The bifrontal frontobasal approach and its variants have long been recommended as the standard for removal of these tumors (*El-Bahy*, 2009).

The bifrontal approach was first described by Horsley (1906) and Cushing (1927) and was later proposed by Tönnes (1938) who preserved the frontal brain tissue by a subfrontal approach.

Many others have used the bifrontal approach for large tumors of the frontal base, such as Al-Mefty (2010), Nakamura (2007), Ransohoff and Nockels (1993). A bifrontal craniotomy might be considered for patients with large tumors because this approach gives direct access to all sides of the tumor. Due to the wide exposure, retraction on the frontal lobes is minimal. It simultaneously allows interruption of the blood supply, preparation of the frontobasal matrix of the tumor, and concomitant decompression. There is usually no problem from the ligation of the anterior sagittal sinus. However, venous drainage should be evaluated by preoperative imaging to avoid venous congestion, and coagulation of draining veins from the anterior frontal lobe should be avoided of possible (*Kirsch et al.*, 2012).

In recent decades, the discovery of fundamental anatomic and physiological principles and the improvement intraoperative visualization provided by the operating microscope, together with refined instrumentation, allowed the evolution of microneurosurgical techniques. These techniques and the enormous development of diagnostic facilities enabled neurosurgeons to treat more complicated neurosurgical diseases through smaller and more specific approaches the keyhole approach in neurosurgery should not aim to limit the craniotomy to the size of a keyhole, which has been a frequent misunderstanding in the past. First of all, the term "keyhole" may imply a concept of geometric construction of the surgical

approach with a choice of the correct limited craniotomy as a key characteristic for entering a particular intracranial space and for working with a minimum of traumatization. In choosing the correct keyhole approach for a specific lesion, it becomes possible to dramatically reduce the size of the craniotomy with less need for dural opening, less brain exposure, and less retraction. The concept of keyhole surgery is based on the careful preoperative study of diagnostic images to determine the anatomic windows that provide access to the pathological taking into consideration the individual processes, pathoanatomic situation of the patient (Reisch and Perneczky, 2005).

Aim of the Work

The aim of this study is to compare between the bifrontal and frontolateral approaches regarding the surgical techniques, advantages, disadvantages and outcome in treatment of olfactory groove meningioma.