

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Experimental Investigation of Using Double-Volute Casing Centrifugal Pump to Reduce Radial Thrust.

A thesis submitted in fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering

Submitted by

Mahmoud El Sayed Ibrahim Matbouly B.SC Mechanical Engineering, Power dept., 2008

Supervised By

Professor Dr. Raouf Nassif Abdelmessih

Professor of Mechanical Power Department, Faculty of Engineering, Ain Shams University

Dr. Ehab Mouris Mina

Ass. Professor of Mechanical Power Department Faculty of Engineering, Ain Shams University

Examiners committee

The undersigned certify that they have read and recommend to the Faculty of Engineering, Ain Shams University, for acceptance of this thesis entitled "Experimental Investigation of Using Double-Volute Casing Centrifugal Pump to Reduce Radial Thrust".

Signature

Prof. Dr. Taher Ibrahim Sabry

Professor of Mechanical Power Engineering Faculty of Engineering (Shebin El-Kom), Menofia university.

Prof. Dr. Mohamed Safwat Zahran

Professor of Mechanical Power Engineering Faculty of Engineering (Shoubra), Benha university.

Prof. Dr. Raouf Nassif Abdelmessih

Professor of Mechanical Power Engineering Faculty of Engineering, Ain Shams University.

Preface

This dissertation is submitted for the Degree of Master of Science in Mechanical Engineering for the Faculty of Engineering of Ain shams University; Cairo.

The work described in the thesis was carried out at the department of mechanical power Engineering, Faculty of Engineering, Ain Shams University, Cairo.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Under supervision and guidance of:

Prof. Dr. Raouf Nassif Abdelmessih Dr. Ehab Mouris Mina

Name : Mahmoud El Sayed Ibrahim Matbouly

Signature :

Date :

Acknowledgement

My Greatest thanks to Allah for giving me the will power and strength to make this great achievement.

I would like first to thank my supervisors Prof. **Dr. Raouf Nassif** and **Dr. Ehab Mouris** for their continuous guidance, encouragement, invaluable assistance and patience. I learned so many valuable things from them, but above all, they taught me how to be devoted to scientific research.

I wish to express my deepest appreciation and gratitude to my beloved **mother**, my beloved **father** and my **brothers** for supported me with the greatest possible care, encouragement and for their endless love through my life.

I would like to express my deepest love to my beloved wife, **Sara** for her understanding, unlimited support and incredible love.

I would like also to thank Eng. **Mohamed Matbouly**, Dr. **Hesham Matbouly** and Eng. **Mohamed Mounir El Boghdady** for their support and encouragement during pump testing and the research stages.

Special thanks to laboratory operators; Mr. Ahmed Sobhy and Mr. Sherif Abdelmoneim for their sincere support during the phases of test rig construction and preliminary runs.

Finally, but most important, I thank God almighty again on all things in my life.

Abstract:

Radial thrust in a single volute centrifugal pump, which is a result of pressure variation in the volute casing, is investigated in order to avoid failures caused by this thrust force. Two ideas are introduced to avoid or to minimize this thrust force, the first is a double volute, and the second is a triple volute. A complete centrifugal pump design was manufactured. The volute was designed such that partition vanes could be added to change the number of volutes. Experiments were performed on single, double, triple volutes centrifugal pump at 500, 800, and 900 rpm for each case.

The performances of the three pumps as seen on a non-dimensional plot, are nearly the same in the three casing types (Single, double and triple volutes). However the values of the efficiency reveal an improvement associated with the presence of the volute(s)

On the other hand, the use of multiple volutes reduced the radial thrust force. These reductions were pronounced as the departure from the BEP was increased. At shut off for instance, the radial thrusts for the double volutes and triple volutes were reduced by 55% and 70%, respectively, below the thrust of a single volute pump.

List of Nomenclatures

Ar	The leakage or clearance area	(m^2)
b_1	Passage width at inlet	(m)
$b_2 { m or} B_2$	Total passage width at outlet	(m)
BEP	Best efficiency point	
\mathbf{B}_{i}	Impeller width at outlet	(m)
B.P	Brake power	(watt)
C_{Q}	The flow coefficient	(-)
C 1	Velocity at inlet vane edge	(m/s)
C'2	Impeller absolute outlet velocity	(m/s)
Ce	Velocity at impeller eye	(m/s)
Cm_1	Radial inlet velocity	(m/s)
Cm_2	Radial outlet velocity	(m/s)
Csu	Velocity at suction flange	(m/s)
\mathbf{D}_1	Diameter of inlet vane edge	(m)
D_2 or D_i	Impeller outlet diameter	(m)
D_{e}	Impeller eye diameter	(m)
Dh	The hub diameter	(m)
$\mathop{D_{ m bb}} olimits_{ m or}$	The impeller back hub diameter	(m)
$D hf \text{ or } D_{Hf}$	Impeller front hub diameter	(m)
Dr	The wearing ring inner diameter	(m)
Ds	Shaft diameter	(m)
\mathbf{D}_{su}	Suction flange diameter	(m)
\mathbf{F}_{r}	Radial thrust force	(N)
Н	Pump's head	(m)
$H_{\rm L}$	Head loss across the wearing ring	(m)
K or Kt	Radial thrust factor	
Ns	Specific speed	[-]
Q	Pump discharge	(m^3/s)
	- -	

QL	Amount of flow leakage	(m^3/s)
Qt	Total discharge	(m^3/s)
Qn	Discharge at BEP	(m^3/s)
t	The normal vane thickness	(m)
T	Shaft torque	[N.m]
u1	Inlet vane edge tangential velocity	(m/s)
u2	Impeller peripheral velocity	(m/s)
Z	Number of vanes	
N	Pump motor speed	rpm

Greek symbols

α'_2		daa
u 2	Angle of water leaving impeller	deg.
β_1	Impeller vane inlet angle	deg.
β_2	The outlet vane angle	deg.
3	The contraction factor	
δs	The shaft maximum allowable shear stress	$[N/m^2]$
φ	Speed ratio	
ω	The angular speed	[rad/sec]
η	The pump overall efficiency	[%]
θ	Angle measured from tongue	deg

List of Figures

Figure 1-1, overhung impeller flexibly-Coupled Single-Stage Foot-Mou	nted
pump	19
Figure 1-2, Impeller between Bearings Flexibly-Coupled Single-Stage A	xial
(Horizontal) Split Case	19
Figure 1- 3, vertical suspended sump Pump	19
Figure 1-4, overhung impeller pump design	20
Figure 1-5, Comparison of pump profiles, single suction pumps	22
Figure 1- 6, closed impeller	23
Figure 1-7, Single volute casing	24
Figure 1- 8, Double (dual) volute casing	24
Figure 1- 9, Diffuser casing	25
Figure 1- 10, Circular (concentric) casing	25
Figure 2- 1, Supposed casing design by John Fleming's	30
Figure 2- 2, José González [8] sliding mesh analysis	32
Figure 3-1, Pump efficiency versus specific speed and pump size [14]	35
Figure 3- 2, Leakage losses	36
Figure 3- 3, Impeller dimension symbols	38
Figure 3- 4, Inlet velocity triangles	39
Figure 3- 5, outlet velocity triangle	41
Figure 3- 6, Outlet velocity diagrams for:	42
Figure 3-7, Vane construction by tangent circular arcs	44
Figure 3- 8, Mixed flow impeller profile	47
Figure 3- 9, Path of particle having spiral flow	49
Figure 3- 10, Elevation of Volute	50
Figure 3- 11, Section through volute	51
Figure 3- 12, Volute passage cross section	52
Figure 3- 13, Impeller section	56
Figure 3- 14, Inlet velocity triangles	58
Figure 3- 15, Outlet velocity triangles	60
Figure 3- 16, Section through volute	64
Figure 3- 17, Average velocities in volute around circumference	68
Figure 3- 18, the complete drawing for the single volute casing	70
Figure 3- 19, The complete drawing for the double volute casing	71
Figure 3- 20, The complete drawing for the triple volute casing	72

Figure 4- 1, Elevation view showing points of pressure measurement
schematically74
Figure 4- 2, picture for test rig74
Figure 4- 3, Schematic diagram for Test rig
Figure 4- 4, flow meter
Figure 4- 5, discharge pressure gauge
Figure 4- 6, pressure distribution measuring headers
Figure 4- 7, Digital AC clamp meter79
Figure 4- 8, Digital tachometer79
Figure 4- 9, manufactured pump driven electric motor
Figure 4- 10, (VFD) control panel
Figure 4- 11, Inlet tank
Figure 5-1, Single volute pump head against flow at500, 800 and 900 rpm84
Figure 5- 2, Single volute pump variation of efficiency against flow at 500,
800 and 900 rpm84
Figure 5-3, Single volute pump power against flow at 500, 800 and 900 rpm
85
Figure 5- 4, Double volute pump head against flow at500, 800 and 900 rpm
86
Figure 5-5, Double volute pump variation of efficiency against flow at 500,
800 and 900 rpm
Figure 5- 6, Double volute pump power against flow at 500, 800 and 900
rpm 87
Figure 5-7, Triple volute pump head against flow at500, 800 and 900 rpm88
Figure 5-8, Triple volute pump variation of efficiency against flow at 500,
800 and 900 rpm
Figure 5-9, Triple volute pump power against flow at 500, 800 and 900 rpm
89
Figure 5- 10, Single volute pump head coefficient (C _H) against flow
coefficient (C _Q)90
Figure 5- 11, Single volute pump power coefficient (C _P) against flow
coefficient (C_0)
Figure 5- 12, Single volute pump variation of efficiency ratio (η/η_b) against
flow coefficient (C _O)
Figure 5- 13, Double volute pump head coefficient (C _H) against flow
coefficient (C_0)
Figure 5- 14, Double volute pump power coefficient (C _P) against flow
coefficient (C_0)

Figure 5- 15, Double volute pump variation of efficiency ratio $(\eta/\eta n)$ against
flow coefficient (C _Q)
flow coefficient (C_Q)
coefficient (C_0)
Figure 5- 17, Triple volute pump power coefficient (C _P) against flow
coefficient (C _Q)94
Figure 5- 18, Triple volute pump variation of efficiency ratio ($\eta/\eta b$) against
flow coefficient (C_0)
Figure 5- 19, comparison of Head coefficient (Ch) against flow coefficient
(Cq) for single, double and Triple volutes pump95
Figure 5- 20, Comparison of efficiency ratio (η/η_{BEP} (Single)) against flow
coefficient (CQ) for single, double and triple volutes
Figure 5- 21, Elevation view showing points of pressure measurement
schematically96
Figure 5- 22, Pressure Distribution along the Volute of the Single Volute
Pump at 500rpm
Figure 5- 23. Pressure Distribution along the Volute of the Single Volute
Pump at 800rpm
Figure 5- 24, Pressure Distribution along the Volute of the Single Volute
Pump at 900rpm
Figure 5- 25, Pressure Distribution along the Volute of the Double Volute
Pump at 500rpm
Figure 5- 26, Pressure Distribution along the Volute of the Double Volute
Pump at 800rpm
Figure 5- 27, Pressure Distribution along the Volute of the Double Volute
Pump at 900rpm
Figure 5- 28, Pressure Distribution along the Volute of the Triple Volute
Pump at 500rpm
Figure 5- 29, Pressure Distribution along the Volute of the Triple Volute
Pump at 800rpm
Figure 5- 30, Pressure Distribution along the Volute of the Triple Volute
Pump at 900rpm
Figure 5-31, Pressure distribution along the volute of the single, double and
triple volute pump at shut-off (900rpm)
Figure 5- 32, Polar plot showing the resultant force direction for single
volute casing (900 rpm) 104
Figure 5- 33, Polar plot showing the resultant force direction for double
volute casing (900 rpm) 104
Figure 5-34, Polar plot showing the resultant force direction for triple volute
casing (900 rpm)

List of Tables

Table 3-1	, Volute	Casing	design	Calculations	55
-----------	----------	--------	--------	--------------	----

Contents

Pre	face		II
Ack	knowled	lgement	. III
Abs	stract:		.IV
List	t of No	nenclatures	V
Gre	ek sym	bols	VII
List	t of Fig	uresV	/III
List	t of Tab	les	XII
Cha	apter (1))	. 18
1	Introdu	action	. 18
1	.1 Pu	mps:	. 18
	1.1.1	Centrifugal pumps	. 18
	1.1.2	Casing design	. 18
	1.1.3	Impeller designs	. 20
	1.1.4	Volute casing type	. 23
		Radial Thrust	. 26
1.1.6 Layout of thesis		Layout of thesis	. 27
Cha	apter (2)	. 28
2	Literat	ure Review	. 28
2	.1 Int	roduction	. 28
Cha	apter (3))	. 34
3	Pump	Design, Part I: Introduction	. 34
3	.1 Int	roduction	. 34
3	.2 Hy	draulic Design of Impeller	. 34
	3.2.1	Selection of Speed	. 34
	3.2.2	Pipe Connections and Velocities	. 35
	3.2.3	Leakage Losses	. 36
	3.2.4	Impeller Inlet Dimensions and Vane Angle	. 37
	3.2.5	Prerotation of the Fluid	. 39
	3.2.6	Flow in Impellers.	. 40

3.2.7	Impeller Outlet Dimensions and Vane Angle	41
3.2.8	Design of Impeller Vanes.	43
3.3 Mi	xed Flow Impeller Profile	46
3.4 Hy	draulic Design of Volute Casing	49
3.5 Par	t II, Pump Design	52
3.6 Des	sign of Pump Shaft Diameter (D _s):	53
3.7 Des	sign of Suction Pipe Diameter (D _{su}):	55
3.8 Des	sign of Pump Impeller:	56
3.8.1	Impeller outlet Dimensions:	56
3.8.2	Impeller Inlet Dimensions and Vane Angles:	57
3.8.3	Impeller Outlet Dimensions and Vane Angles:	59
3.8.4	Summary:	62
3.9 De	sign of Volute Casing:	64
3.9.1	Single volute casing:	69
3.9.2	Double volute casing:	71
3.9.3	Triple volute casing:	71
Chapter (4))	73
4 Test ap	pparatus	73
4.1 Inta	roduction	73
4.2 Tes	st rig description:	73
4.3 Tes	st rig objectives	75
4.4 Par	rameters to be measured	75
4.5 Des	scription of the measurement	76
4.5.1	Flow Meter:	76
4.5.2	Pressure Gauges	77
4.5.3	Clamp meter and voltmeter:	78
4.5.4	Digital Tachometer	79
4.5.5	Electric motor	80
4.5.6	Control Panel:	80
4.5.7	Inlet tank	81