Assessment of Decidual Natural Killer Cells CD56⁺ Population in Placental Bed in Fetal Growth Restriction

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Noha Mahmoud Kasim

M.B.B.Ch, December 2010

Faculty of Medicine- Ain Shams University

Resident of Obstetrics and Gynecology El-sheikh Zayed Al
Nahian Hospital

Under Supervision of

Prof. Mohammad Alaa Mohi El-Din El-Ghannam

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain-Shams University

Prof. Mohamed ElMandooh Mohamed

Professor of Obstetrics and Gynecology Faculty of Medicine Ain-Shams University

Dr. Mohammed Saeed El-Din El-safty

Assistant professor of Obstetrics and Gynecology Faculty of Medicine Ain-Shams University

> Faculty of Medicine Ain Shams University 2017

- Firstly, thanks to **ALLAH**, Who gave me the power to finish this work.
- I'd like to express my sincere gratitude to my advisor **Prof.**Mohammad Alaa Mohi El-Din El-Ghannam

 Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain-Shams University for the continuous support of my research.
- I am greatly honored to express my deepest thanks, gratitude and respect to **Dr. Mohamed ElMandooh**Mohamed professor of Obstetrics and Gynecology, Faculty of Medicine, Ain-Shams University for his guidance, supervision and continuous support.
- I am deeply indebted to **Dr. Mohammed Saeed El- Din El-safty** Assistant professor of Obstetrics and Gynecology, faculty of medicine Ain-Shams University for her guidance and unlimited assistance throughout this work.
- I'd like to thank **Dr.Nahla Mohamed Awad** consultant of Pathology in Early cancer Detection Unite at Ain Shams University Hospitals, for her patience, motivation and immense knowledge.
- Last but not least, I would like to thank my family for supporting me spiritually throughout writing this thesis and my life in general.

Noha Mahmoud Kasim

Contents

Subjects Page	
List of abbreviation	
List of tables	II
List of figures	III
Introduction	1
Aim of the work	6
Review of literature	
- Chapter (1): Intrauterine Growth Restriction	7
- Chapter (2): Natural Killer Cell	36
- Chapter (3): Immunobiologic Adaptation of Pre	gnancy42
- Chater (4): Normal Placentation	50
Patients and methods	64
Results	70
Discussion	93
Summary	99
Concolsion	102
Recommendations	103
References	104
Arabic summary	

List of Abbreviations

AC : Abdominal circumference

ACA : Anticardiolipin antibodies

ACOG : American Congress of Obstetricians and

Gynecologists

AFI : Amniotic fluid index

AIUM : American Institute of Ultrasound in Medicine)

Ang : Angiopoietin

APS : Antiphospholipid syndrome

ART : Artificial reproductive techniques

BPD : Biparietal diameter

BPP : Biophysical profile

CMV : Cytomegalovirus

COPD : Chronic Obstructive Pulmonary Disease

CRL : Crown-rump length

CTG : Cardiotocography

CXC R3 : Chemokine receptor R3

CXCR1 : Chemokine receptor R1

DCs : Dendritic cells

DNA : Deoxyribonucleic acid

dNK : Decidual Natural killer cells

ECM : Extracellular matrix

EFW : Estimated fetal weight

EFW: Estimated fetal weight

eNK : Endometrial Natural killer cells

EVT : Extravillous **trophoblast**

FcγRIII : Fragment crystallizable

FHR : Fetal heart rateFL : Femur length

GM-CSF: Granulocyte–macrophage colony-stimulating

GRIT : The Growth Restriction Intervention Trial

HC: Head circumference

HIV : Human immunodeficiency virus

HLA : Human leukocyte antigen

HPF : High Power Field

IFNγ : Interferon-γ

IG : Immunoglobulin

IL-2Rβ : Interleukin-2 receptor subunit beta

IL-3 : Interleukin-3 receptor

IL-8 : Interleukin-8 receptor

IL-IRI : Interleukin-iri

IP-10 : Inducible protein 10IQ : Intelligence quotient

IUGR : Intrauterine growth restriction

IVF : In vitro fertilization

LBW : Low birth weight

MCA : Middle cerebral artery

Mhc : Major histocompatibility complex

Nk : Natural killer T cells

NKT : Natural killer cells

NO : Nitric oxide

PGF : Placental growth factor

PGs : Prostaglandins

PIGF: Phosphatidylinositol-glycan biosynthesis class F

protein

PIGF : Placental growth factor

RBC: Red blood cell

RCOG : Royal College of Obstetricians and

Gynecologists

'SFH' : Symphysis fundal hieght

sFlt1 : Soluble fms-like tyrosine kinase-1

sFlt-1 : Soluble fms-like tyrosine kinase receptor-1

SGA : Small for gestational age

SLE : Systemic lupus erythematosus

TB : Tuberculosis

TCR : T-cell receptor

TGF-β : Transforming growth factor **beta** 1

Th type-1 : T helper cells type-1

Th2 : Type-2 T-helper

TNF- α : Tumour necrosis factor- α

TORCH: Toxoplasmosis, rubella, cytomegalovirus, herpes

simplex

UA : Umbilical artery

VEGF : Vascular endothelial growth factor

List of Tables

Tables	TP:41 -		
No.	Title		
1	Etiology of IUGR	18	
2	Perinatal and pediatric complications from IUGR	24	
3	Approximate proportions of NK cells in blood and deciduas	46	
4	Comparison between cases and controls as regard Age, Gestational Age and BMI	71	
5	Comparison between cases and controls as regard Parity, Previous Cs and Previous Abortion	75	
6	Comparison between cases and controls as regard Systolic, Diastolic B.P and HB	78	
7	Comparison between cases and controls as regard Birth weight and Apgar score at 5 minutes	82	
8	Comparison between cases and controls as regard Immunohistochemical scores	85	
9	Comparison between cases and controls as regard dNK Cell Density	87	

List of Figures

Figures No.	Title					
1	Symphysis fundal hieght 'SFH'					
2	NK cell changes During the adaptive	39				
	process of endometrium to decidua					
3	The blood flow through the maternal	54				
	uterine arteries is increased by the					
	infiltration of the arterial media and					
	endothelium by extravillous trophoblast					
	cells					
4	Scheme of placental circulation					
5	The diagram depicts the 2 different	60				
	pathways leading to preeclampsia or IUGR					
6	The diagram represents the early	62				
	development of the trophoblast lineage					
7	Flow chart shows the study groups.	70				
8	Comparison between cases and controls as regard	71				
	Age.					
9	Comparison between cases and controls as	72				
	regard Gestational Age.					
10	Comparison between cases and controls as	73				
	regard BMI.					

Figures	Title				
No.	Title				
11	Comparison between cases and controls as	75			
	regard Parity				
12	Comparison between cases and controls as				
	regard previous CS				
13	Comparison between cases and controls as				
	regard previous abortion				
14	Comparison between cases and controls as	79			
	regard Systolic B.P.				
15	Comparison between cases and controls as				
	regard Diastolic B.P.				
16	Comparison between cases and controls as				
	regard Mean Hb.				
17	Comparison between cases and controls as 8				
	regard Birth weight				
18	Comparison between cases and controls as 84				
	regard Apgar score.				
19	Comparison between cases and controls as 86				
	regard Immunohistochemical scores				
20	Comparison between cases and controls as				
	regard dNK Cell Density.				
21	dNK cells CD56 in subject from control				
	group shows high density by				
	immunohistochemical stain in HPF x100				

Figures No.	Title		
22	. dNK cells CD56 in subject from control	89	
	group shows high density		
	immunohistochemical score 3+ in HPF		
	x400		
23	dNK cells CD56 in subject from control	90	
	group shows high density by		
	immunohistochemical stain in HPF x100.		
24	dNK cells CD56in subject from control	90	
	group shows high density by		
	immunohistochemical score 4+ in HPF		
	x400.		
25	dNK cells CD56in patient complicated	91	
	IUGR shows low density by		
	immunohistochemical stain in HPF x100		
26	dNK cells CD56 in patient complicated	91	
	IUGR shows low density by		
	immunohistochemical score 2+ in HPF		
	x400		
27	dNK cells CD56in patient complicated	92	
	IUGR shows low density by		
	immunohistochemical stain in HPF x100.		

Figures No.	Title	Page No.
28	dNK cells CD56in patient complicated	92
	IUGR shows low density by immunohistochemical stain x100.	

Introduction

Several definitions and terminology has been used to define IUGR, including but not limited to estimated fetal weight <25 %, <15 %, <10 %, <5 %, <3 %, <2.5 %, and <1 % for gestational age. Other definitions of IUGR include estimated weight less than 2 standard deviations below the mean weight for gestational age (*Suhag and Berghella*, 2013).

The causes of IUGR are broadly described under three main categories: maternal, fetal, and placental (*Hendrix and Berghell*, 2008).

Normal fetal growth reflects the interaction between the genetically predetermined growth potential and the presence of a healthy fetus, placenta and mother (*Nardozza* et al., 2017).

A Several maternal demographic factors have been associated with IUGR. Women at extremes of reproductive age, especially young maternal age, are at increased risk for IUGR. There no association between maternal age and low birth weight and reported an independent effect of social factors, such as ethnicity, poverty status, age at menarche, maternal height, net maternal weight gain, and smoking during pregnancy, on birth weight in adolescent mothers (*Suhag and Berghella*, 2013).

Fetal factors can vary from genetic causes, congenital malformations, fetal infection, or other causes, including multiple pregnancies. Genetic causes can contribute to 5-20 % of IUGR, especially for early onset growth restricted fetuses. Genetic causes further include various abnormalities, such as chromosomal abnormalities, e.g., trisomy 21, 18, 13, and 16. Of these, trisomy 18 is associated with more severe IUGR compared with trisomy 21 or 13. Trisomy 16 is known to be a lethal chromosomal abnormality in the non-mosaic state; however, in the presence of placenta mosaicism, trisomy 16 can result in IUGR (*Baschat et al.*, 2012).

Placental insufficiency accounts for many cases of IUGR and can affect up to 3 % or more of all pregnancies. The pathogenesis of IUGR is not well defined; defects in the placental circulation and transport can affect the nutrient transport to the fetus, resulting in IUGR. The relative decrease in placental mass and function can result in the development of IUGR. Several animal models have shown that fetal growth can be impaired when up to 50 % of the placental mass is removed. Like the animal model, growth-restricted human fetuses are noted to have approximately a 24 % smaller placental weight compared with a normally grown fetus (*Brett et al.*, 2014).

The asymmetrical IUGR fetuses are noted to be at higher risk for major anomalies, low birth weight, perinatal mortality, preterm delivery, cesarean section, and overall poor outcomes, compared to symmetrical IUGR (*Dashe et al.*, 2000). Umbilical artery Doppler studies and antenatal surveillance are very good predictors of pregnancy outcomes in all types of IUGR (*Alfirevic and Gyte*, 2010).

Perinatal morbidity and mortality is significantly increased in the presence of birth weight less than 10th percentile. After prematurity, IUGR is the second leading cause of perinatal mortality. IUGR fetuses have approximately a fivefold to tenfold increased risk of dying in utero, with up to 23 % to 65 % of stillbirths (*Chen et al.*, 2011).

The first step in diagnosis of fetus with growth restriction is to establish accurate dating. There are several formulae to date the pregnancy from early biometrics, with low systematic and random errors. Crown-rump length (CRL) is a biometric parameter that can be measured in the early stages of gestation. Technically the main limitation is the progressive bending of the embryo which makes measurements less reliable beyond 12-13 weeks of gestation (or 60-70 mm). If possible, below the 14 weeks, all obstetric ultrasound units are currently recommended to adopt this method of assessing gestational age from crown rump length. From then on, it seems conceptually more appropriate to use cephalic (head circumference) and/ or femur (femur length) biometrics (*Xu et al.*, *2015*).