Potential anti-fibrotic effect of deferoxamine in concanavalin A-induced liver fibrosis.

Thesis presented by

Samar Fathy Moustafa Darwish

B.Sc. of Pharmaceutical Sciences (2006)
M.Sc. of Pharmaceutical Sciences (Pharmacology & Toxicology, 2012)
Faculty of pharmacy, Ain Shams University

Submitted for the partial fulfilment of Ph.D. degree in Pharmaceutical Sciences (Pharmacology & Toxicology)

Under the supervision of

Prof. Ebtehal El-Demerdash Zaki

Professor and Head of Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University.

Prof. Azza Sayed Awad

Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University.

Ass.Prof. Wesam Mostafa El-Bakly

Assistant professor of Pharmacology, Faculty of medicine, AinShamsUniversity

Dr. Reem Nabil Abou El-Naga

Lecturer of Pharmacology & Toxicology, Faculty of Pharmacy, Ain shams University

Faculty of Pharmacy-Ain Shams University (2015)

First and foremost, I am greatly thankful and indebted to Almighty ALLAH, whose blessing and abundant grace I will never be able to thank him for, and may this work add to our good deeds to gain his kind mercifulness and forgiveness.

My sincere thanks and my deep feeling of gratitude to Prof. Ebtehal El-Demerdash Zaki, Professor and Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her trust in me to participate in this project, which is an honor that I will ever cherish. Her valuable supervision, fruitful advice and constructive discussions, offered me the experience to push me forward. I could not imagine having a better advisor and mentor throughout my life. Her willingness to tackle the hardest problems is an aspect of her leadership that I admire and plan to simulate in the future.

I wish to express my appreciation and respect to Prof. Azza Sayed Awad, Professor of Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, for her guidance, kind supervision and encouragement. Her support and trust that she gave me truly help the progression and smoothness of this work. I am very lucky to work under her supervision.

No words can express or repay my great appreciation to Ass. Prof. Wesam Moustafa El-Bakly, Assistant Professor of Pharmacology, Faculty of medicine, Ain Shams University. She could always be counted on for an honest opinion, objectivity and clarity of thought in both scientific and social analysis, which I valued greatly. She influenced my graduate career in an ineffably positive way

with her tremendous effort, close supervision and indispensable help to teach me essentially everything I know about the practical work and thesis writing. I am really grateful for her wholehearted support in my worst times, and I am blessed to work alongside with her, hoping that our companionship will last forever.

I am greatly indebted to **Dr. Reem Nabil Abou El-Naga**, Lecturer of Pharmacology & Toxicology, Faculty of Pharmacy, Ain shams University, for her critical contribution to accomplish this work, and for her honest and cooperative responses to all the questions solicited in this study. Her faithful guidance, keen support and encouragement will inspire me a long time to come. I was fortunate to have the chance to know such a friendly and cheerful person like her.

Finally, my profound gratefulness to my dear father and mother, to whom words are not enough to describe their care, tenderness and support, nor can they fulfill their unique stature in my life. They continuously prayed to Almighty ALLAH for my success and provided me with the suitable atmosphere to work. And I am very thankful to my dear sister; Samah, and brother; Sameh who believe in me and my ability to achieve my ambitions. My deep and sincere love is devoted to my beloved husband; Amr and to my soul; my daughter; Nadin, who have been a great source of motivation and inspiration, and for all their sacrifices and patience along the way to help me. May ALLAH bless them for me.

At last, I am looking to start contributing to the world in earnest, and any future success that I may enjoy will be indebted to all of those mentioned above, and to all of them I dedicate this thesis.

Samar Fathy Darwish

Abstract

<u>Background & Aims:</u> Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which was found to be a common finding among hepatitis C virus patients and related to interferon resistance. Here, the potential anti-fibrotic effect of deferoxamine; the main iron chelator, was elucidated and its additional usefulness to interferon-based therapy in an immunological model of liver fibrosis.

Methods: Liver fibrosis was induced by concanavalin A (15 mg/kg/week, i.v.). Rats were co-treated with deferoxamine (300 mg/kg, 3times/week, i.p.) and/or pegylated interferon-α (1.5 μg/kg/week, s.c.) for 6 consecutive weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed.

Results: Concanavalin A induced a significant increase in the hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of the total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased the expression of CD4⁺ T-cells, NF-κB as well as all the downstream inflammatory cascades. Further, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which were confirmed by histopathology. Co-treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly, and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers didn't improve upon pegylated interferon-α alone, besides the remarkable increase in interleukin-6 liver content. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated interleukin-6 elevation, as well as increased hepcidin gene expression.

<u>Conclusion:</u> This study provides evidences for the potent anti-fibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress, subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for hepatitis C virus patients may offer a promising adjuvant modality to enhance therapeutic response.

Keywords: Liver fibrosis; Iron; Deferoxamine; Interferon; Hepcidin

Index

List of Contents

Subject	Page	
List of Abbreviations	I	
List of Tables	III	
List of Figures	IV	
Review of literature		
1. Liver	1	
2. Liver fibrosis	5	
3. Animal models of liver fibrosis	28	
4. Pegylated IFN-α2b	34	
5. Iron-related liver injury	43	
6. Deferoxamine	49	
Aim of the work	54	
Materials & Methods		
Experimental Design	55	
Materials	59	
Methods	65	
Results	106	
Discussion	158	
Summary & Conclusion	166	
References	170	
Arabic Summary	a	

List of Abbreviations

ALT	Alanine aminotransferase
ANOVA	Analysis of variance
AST	Aspartate aminotransferase
BSA	Bovine serum albumin
CCl ₄	Carbon tetrachloride
Con A	Concanavalin A
COX-2	Cyclooxygenase-2 enzyme
DFO	Deferoxamine
dNTPs	Deoxynucleotide triphosphates
ECM	Extracellular matrix
ELISA	Enzyme-linked Immunosorbent Assay
ET-1	Endothelin-1
GSH	Reduced glutathione
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HDV	Hepatitis delta virus
H&E	Hematoxylin and eosin
H_2O_2	Hydrogen peroxide
HSCs	Hepatic stellate cells
IFN	Interferon
IFN-α	Interferon-alpha
IFN-γ	Interferon-gamma
IL	Interleukin
iNOS	Inducible nitric oxide synthase enzyme
i.p.	Intraperitoneal
i.v.	Intravenous
KCs	Kupffer cells
MCP-1	Monocyte chemotactic protein-1
MDA	Malondialdehyde as an index for lipid peroxides
MMPs	Metalloproteinases
NASH	Non-alcoholic steatohepatitis
NF-ĸB	Nuclear factor kappa-B
NKs	Natural killer cells

NO_2^+	Nitrogen dioxide radical
O_2	Superoxide
OH,	Hydroxyl radical
ONOO.	Peroxynitrite
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
peg IFN-α	Pegylated interferon-alpha
RBV	Ribavirin
RNase	Ribonuclease
ROS	Reactive oxygen species
RQ	Relative quantitation
s.c.	Subcutaneous
SECs	Sinusoidal endothelial cells
α-SMA	Alpha-smooth muscle actin
SOD	Superoxide dismutase
STAT	Signal transducer and activator of transcription
SVR	Sustained virological response
t _{1/2}	Half-life
TAC	Total antioxidant capacity
TBA	Thiobarbituric acid
TC	Total cholesterol
TG	Triglycerides
TGF-β1	Transforming growth factor beta-1
TIMPs	Tissue inhibitors of the metalloproteinase
TNF-α	Tumor necrosis factor-alpha

List of Tables

No.	Title	Page
1	Effects of different doses of DFO on serum activities of liver enzymes in rats subjected to acute Con A hepatotoxicity	107
2	Effects of DFO and/or peg IFN-α on body weight, liver index and serum activities of liver enzymes in rats with Con A-induced liver fibrosis	114
3	Effects of DFO and/or peg IFN-α on serum TC, TG, albumin and total bilirubin in rats with Con A-induced liver fibrosis	120
4	Effects of DFO and/or peg IFN-α on liver oxidative stress markers in rats with Con A-induced liver fibrosis	129
5	Effects of DFO and/or peg IFN-α on liver content of IL-6 and IFN-γ in rats with Con A-induced liver fibrosis	143
6	Effects of DFO and/or peg IFN-α on liver content of TGF-β1 in rats with Con A-induced liver fibrosis	148
7	Effects of DFO and/or peg IFN-α on liver content of hydroxyproline in rats with Con A-induced liver fibrosis	151
8	Effects of DFO and/or peg IFN-α on liver content of iron in rats with Con A-induced liver fibrosis	154

List of Figures

No.	Title	Page
1	Structure of hepatic lobule	2
2	Changes in the hepatic architecture (A) associated with advanced hepatic fibrosis (B)	10
3	Pathways of stellate cell activation and resolution during liver injury	14
4	Chemical structure of peg IFN-α2b	35
5	The Haber-Weiss, Fenton reactions and peroxynitrite anion combine using iron in a catalytic cycle to produce the very damaging OH and NO ₂	45
6	Chemical structure of deferoxamine and its iron complex	49
7	Standard calibration curve of ALT	66
8	Standard calibration curve of AST	68
9	Standard calibration curve of IL-6	85
10	Standard calibration curve of IFN-γ	89
11	Standard calibration curve of TGF-β1	93
12	Standard calibration curve of hydroxyproline	95
13	Effects of different doses of DFO on serum ALT activity in rats subjected to acute Con A hepatotoxicity	108

No.	Title	Page
14	Effects of different doses of DFO on serum AST activity in rats subjected to acute Con A hepatotoxicity	109
15	Photomicrographs of liver sections stained by H&E (×400)	111
16	Effects of DFO and/or peg IFN-α on (A) body weight and (B) liver index in rats with Con A-induced liver fibrosis	115
17	Effects of DFO and/or peg IFN-α on serum ALT activity in rats with Con A-induced liver fibrosis	116
18	Effects of DFO and/or peg IFN-α on serum AST activity in rats with Con A-induced liver fibrosis	117
19	Effects of DFO and/or peg IFN-α on serum TC in rats with Con A-induced liver fibrosis	121
20	Effects of DFO and/or peg IFN-α on serum TG in rats with Con A-induced liver fibrosis	122
21	Effects of DFO and/or peg IFN-α on serum albumin in rats with Con A-induced liver fibrosis	123
22	Effects of DFO and/or peg IFN-α on serum total bilirubin in rats with Con A-induced liver fibrosis	124
23	Photomicrographs of liver sections stained by H&E (×400)	126
24	Effects of DFO and/or peg IFN-α on liver TAC in rats with Con A-induced liver fibrosis	130

No.	Title	Page
25	Effects of DFO and/or peg IFN-α on liver content of GSH in rats with Con A-induced liver fibrosis	131
26	Effects of DFO and/or peg IFN-α on liver content of MDA in rats with Con A-induced liver fibrosis	132
27	Effects of DFO and/or peg IFN-α on liver activity of SOD in rats with Con A-induced liver fibrosis	133
28	Liver expression of CD4 ⁺ T-cells in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	135
29	Liver expression of NF-κB in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	137
30	Liver expression of TNF-α in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	138
31	Liver expression of iNOS in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	140
32	Liver expression of COX-2 in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	141
33	Effects of DFO and/or peg IFN-α on liver content of IL-6 in rats with Con A-induced liver fibrosis	144
34	Effects of DFO and/or peg IFN-α on liver content of IFN-γ in rats with Con A-induced liver fibrosis	145

LIST OF FIGURES

No.	Title	Page
35	Liver expression of α -SMA in rats with Con A-induced liver fibrosis by immunohistochemical staining (×100)	147
36	Effects of DFO and/or peg IFN-α on liver content of TGF-β1 in rats with Con A-induced liver fibrosis	149
37	Photomicrographs of liver sections stained by Masson's trichrome (×200)	152
38	Effects of DFO and/or peg IFN-α on liver content of iron in rats with Con A-induced liver fibrosis	155
39	Effects of DFO and/or peg IFN-α on hepatic gene expression of hepcidin in rats with Con A-induced liver fibrosis	157