

Ain shams University Faculty of Science Chemistry Department

Behavioral variation by ionizing irradiation of recycled thermoplastic elastomer reinforced with natural fibers or inorganic fillers

Submitted to
Chemistry Department, Faculty of science Ain shams University
for the Degree of Ph D of Science in Chemistry

Ву

Heba Ahmed Abd El-naby Mohamed

Assistant Lecturer in Polymer Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority, Egypt

Board of Scientific Supervision

Prof. Dr./Maher A. El hashash

Prof. of Chemistry Department Faculty of Science Ain Shams University Prof. Dr./Raouf O. Aly

Professor of Polymer Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority, Egypt

Assist. Prof. Dr./Medhat M. Hassan

Assistant Professor of Polymer Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority, Egypt

QUALIFICATION

Name : Heba Ahmed Abd El- naby mohamed

Scientific Degree: M.Sc. of Science

Department: Chemistry

College : Faculty of Science

University : Ain Shams University

Job : Assistant Lecturer in Polymer Chemistry

Department National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt

Graduation Year: 2008

APPROVAL SHEET

Name: Heba Ahmed Abd El- Naby Mohamed

Title: Behavioral variation by ionizing irradiation of recycled thermoplastic elastomer reinforced with natural fibers or inorganic fillers

Scientific Degree: Ph.D.of Science

Board of Scientific Supervisors

Prof. Dr./ Maher A. El hashash

Prof. of Chemistry Department, Faculty of Science Ain Shams University

Prof. Dr./ Raouf O. Aly

Professor of Polymer Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority, Egypt

Assist. Prof. Dr./ Medhat M. Hassan

Assistant Professor of Polymer Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority, Egypt

Acknowledgement

First of all, the main thanks to "Allah" to whom I always pray and under the light of his 'HOLLY FACE" I live and go.

I would like to offer my deep thanks to **Prof. Dr. Maher A. El- hashash** Professor of Organic Chemistry, Faculty of Science, Chemistry Department, Ain shams University For his continouse guidence, interest, valuable discussion, supervision and advices throughout this work.

I would like to express my sincere gratitude and respect to **Prof. Dr. Raouf** O. Aly; Prof. in National Center for Radiation Research & Technology, for his masterly teaching, valuable advices, honest assistance. wise guidance, kind supervision and continuous encouragement.

Also, I am grateful to **Asst. Prof. Dr. Medhat M. Hassan**; Asst. Prof. in National Center for Radiation Research & Technology, for priceless help and support.

Also I would like to thank the financial support from Academy Of Scientific Research, Cairo, Egypt

I wish to express my sincere gratitude to all the members and colleagues in the National Center for Radiation Research & Technology and Faculty of Science Ain shams University, for their efforts, help and friendship throughout my research.

This Work Is Dedicate

To my parents

Without Their Support,

Endless Help and Continues

Encouragement All the Time

I Could Never Finish This

Work

I Am So Proud To Be Your

Daughter

Contents

	Page
List of abbreviations	i
List of tables	iii
List of figures	VI
List of Schemes	
Introduction	1
2.1. Polymeric waste disposal	5
2.2. Agricultural residues	8
2.3. Recycling economic aspects	11
Aim of the work	13
Literature review	14
2.1.Polymer Recycling	14
2.1.1.Conventional recycling	16
2.1.2.Compounding	21
2.1.2.1.Additives	24
2.1.2.1.1.Inorganic additives	26
2.1.2.1.1.Kaolin clay	28
2.1.2.1.1.2.Flame-retardants	28
2.1.2.1.2.Bio-additives	30
2.1.2.1.2.Fiber treatment	34
2.1.2.1.Bagasse	40
2.1.2.1.2.2.Sisal	40
2.1.3.Irradiation	41
2.1.3.1.Radiation sources	43
2.1.3.2.Radiation mechanisms	45
2.1.3.2.1.Radiation-induced crosslinking and	48
scission	
2.1.3.2.1.1.Crosslinking	50
2.1.2.1.2.Scission	51
2.1.3.3.Radiation commercial recycling	51
2.2.Fabricated Systems	54
2.2.1.Filled PE/EPDM	54
2.2.2.Irradiated filled PE/EPDM	55

2.2.3.Irradiated recycled PE/PE	57
2.2.4.Irradiated EPDM/Elastomer	58
2.2.5.Irradiated filled EPDM/Elastomer	59
2.2.6.Filled EPDM	61
2.2.7.Hybrid filled PE/PE	63
2.2.8.Hybrid filled PE	63
2.2.9.Hybrid filled thermoplast	63
2.2.10.Hybrid filled thermoset	71
2.2.11.Fiber filled PE	72
2.2.12.Fiber filled thermoplast	78
2.2.13.Irradiated fiber filled thermoplast	81
2.2.14.Filled thermoset	83
2.2.15.Fiber filled thermoset	85
2.2.16.Fiber filled thermoplast and thermoset	86
2.2.17.Filled fiber	86
Material and Methods	87
3.1Material	87
3.1.1.Waste polyethylene (WPE)	87
3.1.2.Ethylene-Propylene Diene Rubbers	87
3.1.3. Vinyl triethoxysilane (VTS)	88
3.1.4.Kaolin	89
3.1.5.Aluminum hydroxide	89
3.1.6.Sisal and Bagasse fibers	89
3.2.Instruments	90
3.2.1.X-ray diffraction (XRD)	90
3.2.2.FTIR Spectroscopy)	90
3.2.3.Mechanical testings	91
3.2.4.Thermal analysis 3.3.5.Thermogravimetric analysis (TGA)	91 91
3.2.6.Differential Scanning Calorimetry (DSC)	91
3.2.7. Morphological characterization	92
3.3.Technical Methods	92
3.3.1.Preparation of silane modified nanokaolin	92
(SMK)	
3.3.2.Preparation of modified fibers	93
3.3.3.Sheet preparation	95

3.3.3.1.Kaolin nanocomposites	95
3.3.3.2. Fire retardant nanicomposites	95
3.3.3.Biocomposites	96
3.3.4.Gamma irradiation	96
3.3.5Physical measurements	96
3.3.5.1.Crosslink density (CLD)	96
3.3.5.2.Gel fraction (Gf)	97
Results and Discussion	
4.1Part 1	98
4.1.SMK nanocomposites	98
4.1.1.Characterization of unmodified and silane	99
modified kaolin	
4.1.1.1.Transmission electron microscope (TEM)	99
4.1.1.2.X-ray diffraction (XRD)	100
4.1.1.3.FTIR spectroscopy	101
4.1.2.Properties of nanocomposites	102
4.1.2.1.Physical properties	102
4.1.2.1.1.Gel fraction	102
4.1.2.1.2.Chemical crosslink density (CLD)	103
4.1.2.2.Mechanical properties	104
4.1.2.3.Thermal stability	108
4.1.2.3.1.Thermogravimetric analysis (TGA)	108
4.1.2.3.2.Differential scanning calorimetry (DSC)	112
4.1.2.4.Scanning electron microscopy (SEM)	115
4.1.3.Conclusions	117
4.2.Part 2	119
4.2.Fire – retardant composites	119
4.2.WPE/EPDM/SMK/ATH composites	119
4.2.1.Mechanical properties	120
4.2.2.Thermogravimetric analysis (TGA)	123
4.2.3.Limiting oxygen index (LOI)	127
4.2.4.Scanning electron microscopy (SEM)	129
4.3.Part 3: Biocomposites	131
4.3.WPE/EPDM/SMBF biocomposites	131

4.3.1.Characterization of unmodified and silane	131
modified bagasse fiber	
4.3.1.1.SEM of untreated and treated fiber	131
4.3.1.2.Thermogravimetric analysis (TGA)	133
4.3.2.Properties of developed biocomposites	134
4.3.2.1.Physical properties	134
4.3.2.2.Soluble fraction (Sf) Gel fraction (Gf)	134
4.3.2.2.Mechanical properties	137
4.3.2.3.Thermogravimetric analysis (TGA)	140
4.3.2.4.Scanning electron microscopy (SEM)	144
4.4.Part 4	146
4.4.WPE/EPDM/SMSF composites	146
4.4.1.Characterization of unmodified and silane -	146
modified sisal - fiber	
4.4.1.1.SEM of untreated and treated fiber	146
4.4.1.2.Thermogravimetric analysis (TGA)	147
4.42.Properties of developed biocomposites	148
4.4.2.1.Physical properties	148
4.4.2.1.1.Gel fraction (Gf)	148
4.4.2.1.2.Chemical crosslink density (CLD)	149
4.4.2.2.Mechanical properties	151
4.4.2.3.Thermogravimetric analysis (TGA)	156
4.4.2.4.Scanning electron microscopy (SEM)	160
4.4.3.Conclusions	163
Summary and conclusion	
References	180
Arabic summary	

List of Tables

No	Title	Page
1	Table 1 shows the main fibers used commercially in composites, which are now produced throughout the world	9
2	Chemical composition of sisal and bagasse natural fibers	89
2	Physico-mechanical properties of bagasse and sisal natural fibers	89
4	TGA data of unirradiated and irradiated blends of WPE/EPDM, 50/50 wt %, with different contents of SMK exposed to dose of 50 and 150kGy.	110
5	TGA data of unirradiated and irradiated blends of WPE/EPDM/SMK, 50/50/15 wt %, with different contents of ATH exposed to 50 and 150 kGy	125
6	TGA data of unirradiated and irradiated blends of WPE/EPDM, (50/50) wt. %, with different contents of bagasse exposed to 50 and 150kGy	143
7	TGA data of unirradiated and irradiated blends of WPE/EPDM, (50/50) wt. %, with different contents of sisal exposed to 50 and 150kGy	158

i