

AIN SHAMS UNIVERSITY FACULTY OF ENGINNERING STRUCTURAL ENGINEERING DEPARTMENT

Experimental and Theoretical Study of Large Capacity End-Plate Connections

By Eng. Riham Refaat EL-Hadary

B.Sc. Civil Engineering Ain Shams University

A Thesis
Submitted in Partial Fulfillment for the Requirements
of the Degree of Master of Science
in Civil Engineering (Structural)

Supervised by

Prof. Dr.
Ahmed Abdelsalam El-Serwi
Professor of Steel structures and Bridges
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Dr.
Rimon Aziz Samaan
Assistant Professor
Structural Engineering
Department Faculty
of Engineering Ain
Shams University

Cairo - 2015

Examiners Committee

1.	Prof Dr. Sherif Ahmed Morad	()			
	Professor of steel structures and bridges, Dean of Faculty of Engineering,				
	Cairo University.				
2.	Prof. Dr. Adel Helmy Salem	()			
	Professor of Steel Structures				
	Faculty of Engineering				
	Ain Shams University				
3.	Prof. Dr. Ahmed Abdelsalam El-Serwi	()			
	Professor of Steel Structures and Bridges				
	Structural Engineering Department				
	Faculty of Engineering				
	Ain Shams University				

Acknowledgements

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

The author would like to express her deepest gratitude and appreciation to her supervisor, Prof. Dr. Ahmed Abdelsalam El-Serwi for his valuable guidance, support and encouragement.

She also greatly appreciates the help, guidance and support provided by Dr. Rimon Aziz Samaan throughout all stages of research.

Finally, the author would like to express her heartfelt appreciation to her father, my mother, for their lots of support and encouragement.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree

of Master of Science in Structural Engineering.

The work included in this thesis has been carried out by the author in

the period from Jan 2011 to Feb 2015.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date://

Signature:

Name: Riham Refaat El-Hadary

99

ABSTRACT

Bolted moment connections have been very popular due to their ease in fabrication and erection. However a clear understanding of the properties, interaction, and function of every single element is not clear due to their complex behavior.

In this research, an overall literature review has been conducted to identify the state of knowledge and gather the required data. An experimental program has also been conducted on five full scale specimens for rigid, large capacity, moment connections. Two specimens represent flushed end plate connections, other two specimens represent extended stiffened end plate connections and one specimen represent extended stiffened end plate connection. 3-D finite element models using ANSYS (ver.11) that accounts for both geometrical and material non-linearities are developed. Verification of the proposed finite element models has been performed by comparing their results with those of the performed experimental study as well as with the experimental work previously performed by other researches and showed good correlation. A parametric study is performed using the verified finite element model on bolted flushed and extended end plate large capacity moment connections. The studied bolt configurations in the tension side are three rows of bolts for extended and two rows of bolts for flushed end plate

connections with four bolts in one row. Three bolt configurations are studied: the first configuration represent connections without horizontal stiffeners, the second configuration represent connections with horizontal stiffeners below the first row of bolts under the tension beam flange, while the third configuration represents connections with stiffeners below the second row of bolts under the tension beam flange. The studied parameters are: end plate thickness and bolt diameter. In order to develop analytical design equations, regression analysis for the results is performed and design formulae are proposed for the connection bending capacity. Finally, a summary of the work carried out in this thesis, along with the general conclusions obtained from this study are presented.

Table of Contents

Abstract

Acknowledgementvi
List of Tablesxii
List of Figuresxiii Notations
XX
Chapter 1: INTRODUCTION
1.1 General
1.2 End Plate Connections
1.3 Aim of research
1.4 Methodology
1.5 Outline of the Dissertation
Chapter 2: LTERATURE REVIEW
2.1 General8
2.2 Previous research9
2.2.1 End Plate Design9
2.2.1.1 Connections with two bolts in one row11
2.2.1.2 Connections with four bolts in one row14

2.2.2 Bolt Design and pryig force	15
2.2.2.1 Connections with two bolts in one row	16
2.2.2.2 Connections with four bolts in one row	19
2.2.3 Finite Element Modeling	21
2.2.3.1 Connections with two bolts in one row	21
2.2.3.2 Connections with four bolts in one row	23
2.2.4 Experimental Studies	24
2.2.4.1 Connections with two bolts in one row	25
2.2.4.2 Connections with four bolts in one row	25
CHAPTER 3: EXPERIMENTAL PROGRAM	
3.1 General	37
3.2 Test Setup	38
3.2.1 Column Description	38
3.2.2 Beam Description	39
3.2.3 End plate Description	40
3.2.3.1 Flushed Connections	40
3.2.3.2 Extended Unstiffened Connections	40
3.2.3.3 Extended Stiffened Connections	41
3.3 Material Properties	41
3.4 Instrumentations of the Tested Connections	41
3.4.1 Strain Gauges	41
3.4.1.2 Strain Gauges Used for Phases-1	42

3.4.1.3 Strain Gauges Used for Phases-2and phases-3	42
3.4.2 Load Cell	43
3.4.3 Dial Gauges	43
3.5 Test Procedures	43
3.6 Specimen description	43
3.7.1 Experimental Results and Discussion of Phase-1	44 45 46 46 47
CHAPTER 4: FINITE ELEMENT MODEL	
4.1 Introduction	76
4.2 The Finite Element Method	77
4.3 Model Description	77
4.3.1 Shell Elements	78
4.3.2 Solid Element	78
4.3.3 Bolt Pretension Force	79
4.3.4 Contact element 178	79
4.4 Geometric Nonlinearity	80
4.4.1 Large Deflection Small Strain Analysis	

4.5 Material Nonlinearity	81
4.5.1 Von Mises Yield Criterion	.84
4.5.2 Modeling of Uniaxial Behavior in Plasticity	.85
4.5.2.1 Stress-Strain Curve	.86
4.6 Types of Adopted Finite Element Techniques	.86
4.7 Finite Element Computer Program Adopted in the Study	
4.8 Solution of the Non-Linear Equations	.88
4.8.1 Static Analysis	88
4.8.2 Incremental Control Techniques	88
4.8.2.1 Force Control	.88
4.9 Loads and Boundary Conditions	89
,,,,,,	.09
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL	
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND	FINITE
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL	FINITE .98
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL 5.1 Introduction	FINITE .98 erimental
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL 5.1 Introduction	FINITE .98 erimental98
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL 5.1 Introduction 5.2 Comparison between Finite Element model and Previous Experiments	FINITE .98 erimental98
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL 5.1 Introduction	FINITE .98 erimental9898
CHAPTER5: VERIFICATION OF EXPERIMENTAL AND ELEMENT MODEL 5.1 Introduction 5.2 Comparison between Finite Element model and Previous Experiments	FINITE .98989899

5.2.2.1 Test specimen	102
5.2.2.2 Finite Element Mesh	103
5.2.2.3 Comparison between finite element model and results	experimental
5.2.3 Mohamed El-demerdash et al (2012) Work	•
5.2.3.1 Specimens Description	107
5.2.3.2 Finite Element Mesh	107
5.2.3.3 Comparison between finite element model and results	experimental
5.3 Results of the Performed Experimental Programmer	109
5.3.1 Meshing of Performed Experimental Work	109
5.3.2 Comparing Results of the Finite Element Model to Experimental Test Results	
5.3.2.1 Phase-1 Specimens	111
5.3.2.1.1 Specimen "F20"	111
5.3.2.1.2 Specimen "F32"	112
5.3.2.2 Phase-2 Specimens	113
5.3.2.2.1 Specimen "ENS20"	113
5.3.2.2.2 Specimen "ENS35"	114
5.3.2.3 Phase-3 Specimens	114
5.3.2.3.1 Specimen "ES20"	115
CHAPTER6: PARAMETRIC STUDIES ON FLUSH E	END PLATE

MOMENT CONNECTIONS

6.1 Introdu	uction					145	
6.2 Conne	ction Sp	ecimen				145	
6.3 Finite	Element	Model				148	
6.4 Resul	ts					149	
	_	ntion-1 "Case nection Mon					
6.4.	1.2. Dist	ribution of E	xterna	Tensile Fo	rce in Bolt.	152	
		tion-2 "Case nection Mon					
6.4.: Bolts		Distribution					in
	_	ation-3 "Case nection Mon					
6.4 Bolts		Distribution					in
6.4.4 C	-	on between nections			-		ıree
6.4.5 configurations Diameter	s with	-	g en	d plate	thickness	and l	nree Bolt
	with Ch	of Adding Stanging Bolt ases	Diame	ter and End	l Plate Thic		
CHAPTER7:	: PARA	METRIC ST	TUYD	Y ON EXT	ENDED S	TIFFENI	ED
END PLATE	MOM	ENT CONN	ECTI(ONS			
7.1 Int	roductio	n	• • • • • • • • • • • • • • • • • • • •			185	
7.2 Co	nnection	Specimen				185	
7.3 Fir	nite Elen	nent Model				187	

7.4 Results	188
Configaration-1 "Case1"	189
7.4.1.1. Connection Moment Capacity	189
7.4.1.2. Distribution of External Ten	
Bolts	
7.4.2.1. Connection Moment Capacity	193
7.4.2.2. Distribution of External Ter	sile Force in
Bolts	193
7.4.3. Configaration-3 "Case3"	195
7.4.3.1. Connection Moment Capacity	195
7.4.3.2. Distribution of External Ten	
7.4.4 Comparison between Ultimate Moment	
Three Phases of Connection	197
7.4.5 Effect of Adding Stiffener on Deformed Sl	nape of End Plate
with Changing Bolt Diameter and End Plate Thi	ickness for three
phases	198
7.4.6Effect of Adding Stiffener on End	Pate Deformed
Shape	200
CHAPTER 8: PROPOSED DESIGN EQUATIONS ANI	O CHARTS
8.1 Introduction	232
8.2 Proposed Design Equation	233
8.2.1 Formation of Design Equation	234
8.2.2 Tabulated Values for the Proj	
8.2.2.1 Extended stiffened end plate connect	
8.2.2.2 Flushed end plate connection	236

		Diameter		_				iess
	8.4 Propos	ed Equation .	Accura	.cy			238	
Element		ecuracy of the	_	-		-	ct to Fin	nite
	8.5 Summa	ary					239	
		CLUSIONS		•••••			251	
9.20	Conclusions					2	52	
9.3	Suggestion	s for future Re	esearche	es		25	52	
		LI	ST O	F TABL	<u>ES</u>			
Table 3-1:	: Beam spe	cimen dimen	sion				43	
Table 3-2:	: Loading c	apacity of ex	aperime	ental test			44	
		ns of verified	-					
	-	ison between (2008)					-	ntal
		dimensions		-	-			al.
	-	ison betwee al. (2003)					-	ntal
	-	ison between El-demerdas					-	ntal
	-	parison betw			-		and fin	nite

Table 6-1: Ratio of ultimate moment capacities for different bolt diameters for connection with 50mm thick end plate151
Table 6-2: Ratio of ultimate moment capacities for different bolt diameters for connection with 10mm thin end plate151
Table 8 - 1: Equations Constants for Configuration-1234
Table 8 - 2: Equations Constants for Configuration-2235.
Table 8 - 3: Equations Constants for Configuration-3235
Table 8 - 4: Equations Constants for Configuration-1236
Table 8 - 5: Equations Constants for Configuration-2236
Table 8 - 6: Equations Constants for Configuration-3237
<u>LIST OF FIGURES</u>
(Fig.1.1): Connection with four rows of bolts
(Fig.1.2): Connection with only two rows of bolts
(Fig.1.3): Typical uses for end plate connections8
(Fig.1.4): Examples of flush end plate connections8
(Fig.1.5): Examples of extended end plate connections8
(Fig.2.1): Flush, Header and Extended end plate connection27
(Fig.2.2): Flushed and extended end plate connection by Salem et al
(2010)27
(Fig.2.3): Initial imperfections in the end-plate by Gang et al
(2006)28
(Fig.2.4) Extended end-plate connections by Maggi et al (2005) 28
(Fig.2.5): Three failure modes of end plate thickness by Maggi et al
(2005)29