

SYNTHESIS, CHARACTERIZATION AND APPLICATION OF NANO-CATALYST SYSTEMS IN SOME PETROLEUM REFINING REACTIONS

A Thesis **Submitted for the Degree of**Doctor of Philosophy

(Chemistry)

BY

Rasha El-Sayed Mohamed Ahmed

B.Sc. (2003)

M.Sc. (2008)

To
The Faculty of Science,
Ain Shams University

Refining Division Catalysis Department

Egyptian Petroleum Research Institute

Cairo, Egypt 2015

Faculty of Science Chemistry Department

SYNTHESIS, CHARACTERIZATION AND APPLICATION OF NANO-CATALYST SYSTEMS IN SOME PETROLEUM REFINING REACTIONS

Ph.D. Thesis

Thesis Supervisors

Prof. Salah A. Hassan

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Prof. Fikry H. Khalil

Professor of Catalysis, Refining Division, Egyptian Petroleum Research Institute

Prof. Mohamed S. El-Shall

Professor of Physical Chemistry, Virginia Commonwealth University, USA

Ass. Prof. Heba M. Abdel Razik

Ass. Prof. of Catalysis, Refining Division, Egyptian Petroleum Research Institute

Head of Department of Chemistry

Hamed A. Y. Derbana

Faculty of Science, Ain Shams University

Cairo, Egypt.

CONTENTS

ACKNOWLEDGMENTS	
LIST OF ABBREVIATIONS	I
LIST OF TABLES	III
LIST OF FIGURES	V
ABSTRACT	XV
THE AIM OF WORK	XVI
CHAPTER I. INTRODUCTION	
1.1. Introduction to Catalysis	1
1.2. Nanoparticles and Nanocatalysts	1
1.3. Common for nanoparticle immobilization	3
1.3.1. Polymer Supports	3
1.3.2. Carbonaceous Supports	3
1.3.3. Porous Membranes as Catalyst Supports	4
1.3.4. Metal Oxide Supports	4
1.3.4.1. Porous Materials	5
1.3.4.1.1. Alumina	6
1.3.4.1.2. Silica	15
1. 4. Formation of Metal Nanosupport	25
1.4.1. Sonochemistry	26
1.4.2. Microwave irradiation	28
1.4.3. Pulsed laser ablation (PLA)	31
1.4.4. Impregnation	31
1.4.5. Deposition Precipitation	32
1.4.6. Co-precipitation	32
1.4.7. Chemical Vapor Deposition	33
1.4.8. Microemulsions	34
1.5. Nano crystalline materials	34
1.5.1. Nickel	

1.5.2. Platinum	38
1.6. Crude Petroleum	42
1.6.1. Catalytic Conversion of cyclo-praffins and n-paraffins	42
1.6.2. Catalytic Conversion of Ethanol	48
1.7. Metal Organic Frameworks (MOFs)	52
1.7.1. Properties of MOF	53
1.7.2. Synthetic methods of MOFs	54
1.7.2.1. Solvent evaporation method	54
1.7.2.2. Diffusion method	54
1.7.2.3. Hydro (solvo) thermal method	55
1.7.2.4. Microwave reaction and ultrasonic methods	56
1.7.3. MIL -101	56
CHAPTER II. EXPERIMENTAL	
2.1. PREPARATION OF REFERENCE CATALYSTS	60
2.1.1. Materials	60
2.1.2. Preparation of alumina- supported and silica- supported Ni or Pt nanocatalysts via microwave assisted solution irradiation (MAS) Pt /SiO ₂ nano- catalysts by rotary chemical	60
2.1.3. Preparation of Ni/Al ₂ O ₃ or Pt/Al ₂ O ₃ and Ni/SiO ₂ or evaporation method (RCE)	61
2.2. PREPARATION OF NANO SUPPORTS	62
2.2.1. Alumina nanopowder as catalyst support	62
2.2.2. Silica nanoparticles as catalyst supports	
2.2.2.1.Preparation of silica nano support using sodium meta- silicate	63
2.2.2.2. Preparation of nano silica support using TEOS	64
2.2.3. Loading of Ni and Pt on prepared nano alumina and nano silica via ultrasonic method (US)	65
2.2.4. Loading of Ni and Pt on nano alumina and nano silica via microwave assisted solution radiation (MAS)	66
2.3. Preparation of metal organic framework (MIL-101)	67

2.3.1. Raw chemicals	67
2.3.2. Synthesis of MIL-101	67
2.3.3. Loading of Ni and Pt on MIL-101	67
2.4. Catalyst characterization	68
2.4.1. X-ray diffraction analysis (XRD)	68
2.4.2. Thermal analysis (DSC-TGA)	68
2.4.3. Surface area measurement	68
2.4.4. Pulse Titration (H ₂ -Chemisorption) for estimation of metal dispersion parameters	69
2.4.5. Transmission Electron Microscopy (TEM) investigation	69
2.4.6. FT-IR analysis	70
2.4.7. Catalytic activity measurements	70
2.4.8. Electrical properties measurement	71
CHAPTER III . RESULTS AND DISCUSSION	
3.1. REFERENCE NANO CATALYSTS	73
3.1.1. Characteristics of alumina-supported Ni or Pt nanocatalysts reduced via microwave assisted solution irradiation (MAS)	73
3.1.1.1. Surface characteristics	73
3.1.1.2. Dispersion profile of supported Pt and Ni	74
3.1.1.3. XRD analysis	77
3.1.1.4. Thermal analysis	78
3.1.1.5. TEM micrographs	80
3.1.1.6. Catalytic performances	82
3.1.1.6 (a). n-hexane conversion	82
3.1.1.6 (b). Cyclohexane conversion	85
3.1.1.6 (c). Ethanol conversion	89
3.1.2.Characteristics of alumina- supported Ni or Pt nanocatalysts prepared by rotary chemical evaporation method (RCE)	93
3.1.2.1. Surface characteristics	93
3.1.2.2. Dispersion profile of Pt and Ni	94

3.1.2.3. XRD analysis	97
3.1.2.4. Thermal analysis	97
3.1.2.5. TEM micrographs	100
3.1.2.6. Catalytic performances	102
3.1.2.6 (a). n-hexane conversion	102
3.1.2.6 (b). Cyclohexane conversion	105
3.1.2.6 (c). Ethanol conversion	108
3.1.3. Characteristics of silica-supported Ni or Pt nanocatalysts via microwave irradiation (MAS)	111
3.1.3.1. Surface characteristics	111
3.1.3.2. Dispersion profile of Pt and Ni	113
3.1.3.3. XRD analysis	115
3.1.3.4. Thermal analysis	116
3.1.3.5. TEM micrographs	118
3.1.3.6. Catalytic performances	120
3.1.3.6 (a). n-hexane conversion	120
3.1.3.6 (b). Cyclohexane conversion	123
3.1.3.6 (c). Ethanol conversion	126
3.1.4. Various characteristics of silica-supported Ni or Pt nanocatalysts synthesized through reduction by RCE method	129
3.1.4.1. Surface characteristics	129
3.1.4.2. Dispersion profile of Pt and Ni	129
3.1.4.3. XRD analysis	132
3.1.4.4. Thermal analysis	132
3.1.4.5. TEM micrographs	135
3.1.4.6. Catalytic performances	137
3.1.4.6(a). n-hexane conversion	137
3.1.3.6(b). Cyclohexane conversion	140
3.1.4.6(c). Ethanol conversion	143
3.1.5. Electrical properties	146

3.2. ALUMINA AND SILICA NANOSUPPORTS	
3.2.1. Various characteristics of alumina nanopowder and alumina- supported Pt and Ni nanocatalysts	151
3.2.1.1. Surface characteristics	151
3.2.1.2. XRD analysis	155
3.2.1.3. Thermal analysis	157
3.2.1.4. TEM micrographs	160
3.2.1.5. AC _{2.5} - Supported Pt and Ni nanocatalysts	160
3.2.1.5(a). Surface characteristics	161
3.2.1.5(b). XRD analysis	164
3.2.1.5 (c). Thermal analysis	165
3.2.1.5(d). TEM micrographs	167
3.2.1.5(e). Catalytic Activity of the selected catalysts	169
(i) n-hexane conversion	169
(ii) Cyclohexane conversion	171
(iii) Ethanol conversion	173
3.2.2. Various characteristics of silica nanopowder and silica- supported Pt and Ni nanocatalysts	181
3.2.2.1. Surface characteristics	181
3.2.2.2. XRD analysis	185
3.2.2.3. Thermal analysis	
3.2.2.4. TEM micrographs	191
3.2.2.5. Loading of Pt and Ni on the modified nano-silica	192
3.2.2.5 (a). Surface characterized	193
3.2.2.5(b). XRD analysis	198
3.2.2.5(c). Thermal analysis	200
3.2.2.5.(d). TEM micrographs	203
3.2.2.5.(e).Catalytic performances	206
(i) n-hexane conversion	206
(ii) Cyclohexane Conversion	209
(iii) Ethanol conversion	212

3.3. VARIOUS CHARACTERISTICS OF MIL-101 AND	
MIL-101 – SUPPORTED PT AND NI NANOCATALYSTS	224
3.3. 1. Surface characteristics	224
3.3.2. XRD analysis	226
3.3.3. Thermal analysis	227
3.3.4. TEM micrographs	228
3.3.5. FT-IR Spectra	228
3.3.2. Mil-101- Supported Pt and Ni nanocatalysts	229
3.3.2.1. Surface characteristics	229
3.3.2.2. XRD analysis	232
3.3.2.3. Thermal analysis	232
4. TEM micrographs2 3.3.	234
3.3.2.5. Catalytic performance of Pt-Mil-101 and Ni-Mil-101 nanocatalysts in ethanol conversion	235
SUMMARY AND CONCLUSIONS	
REFERENCES	241
ARABIC SUMMARY	

ACKNOWLEDGMENTS

First of all I would like to thank our creator the Lord (Allah) for His blessings of brain and senses. Thank you Allah for supporting me with faith, strength, patience, and motivation without which I would not have achieved this.

I would like to express my deep gratitude to **Prof. Dr. Salah A. Hassan**, Professor of Physical Chemistry, Faculty of Science, Ain Shams University for kindly initiating the subject of this thesis with sincere supervision, guidance and constant support and interest.

Deep sense of gratitude to professor **Prof. Dr. Fikry H. Khalil**, Egyption Petroleum Research Institute, for his careful supervision, valuable suggestions, devoting and efforts to achieve this work. To Professor Dr. Fikry I offer my gratitude and thanks.

I wish to express my deep thanks to **Ass. Prof. Heba M. Abdel Razik**, assistant professor of catalysis, refining Division, Egyption Petroleum Research Institute (EPRI) for her meticulous supervision, continuous support, generous help and sincere sisterly care throughout this thesis. Beneficial suggestions, providing materials, great assistance and constructive discussion and revision of thesis with **Prof. Dr. Salah A. Hassan**

Moreover, I like to thanks (EPRI), Refining Division, Catalysis Department for providing every possible facility for research and all my colleagues who have helped me.

Finally, I cannot thank my family enough for all of their love, encouragement, and counsel. To my parents, I owe everything. They have taught me many things. Above all they taught me that patience, determination, persistence, and faith are the keys to success.

LIST OF ABBREVIATIONS

SCS Solution combustion synthesis

CTAB Cetyl trimethylammonium bromide

PVP poly (vinylpyrrolidone)

APES 3-aminopropyl-triethoxysilane

TEOS Tetraethyl orthosilicate

NP-10 Nonyl phenol ethoxylated decylether

MCM-41 (Mesoporous silica) Mobil Catalytic Material Number 41

TPA Tetrapropyl ammonium⁺

SN Silica nanospheres

US Ultrasound

M(NPs) Metal Nanoparticles

CNF Carbon nanofibers

TBAB Tetrabutyl ammonium bromide

SMNPs Supported metal nanoparticles

MWI Microwave irradiation

PLA Pulsed laser ablation

CVD Chemical vapor deposition

USP Ultrasonic spray pyrolysis

OA Oleylamine

TTAB Trimethyl tetradecyl ammonium bromide

PVP Polyvinlypyrrolidone

WI Wetness impregnation

EADC Ethylaluminumdichloride

MCP Methylcyclopentane

CH Cyclohexane

DEE Diethyl ether

MOFs Metal Organic Frameworks

MIL-101 MOFs - chromium terephthalate

PTA Phosphotungstic acid

TMAOH Tetramethyl ammonium hydroxide

 $(C_2H_5)_3N$ Triethylamine C_2H_7N Dimethylamine

MAS Microwave assisted solution irradiation

RCE Rotary chemical evaporation method

Pluronic (P123) (PEG-PPG-PEG)

DMF Dimethylformamide

XRD X-ray diffraction analysis

TGA Thermal Gravimetric Analysis

DSC <u>Differential Scanning Calorimetry</u>

BET Brunauer, Emmett and Teller

PSD Pore size distributions

TEM Transmission Electron Microscopy

FT-IR Fourier Transform Infra Red

FID Flame ionization detector

LIST OF TABLES

		Page
Table 3.1.1:	Surface parameters of Al ₂ O ₃ , and Pt-Al and Ni-Al nanocatalysts.	76
Table 3.1.2:	H_2 –chemisorptions data of Pt/ Al_2O_3 and Ni/ Al_2O_3 catalysts.	76
Table 3.1.3:	Weight losses (%) from TGA curves of Pt or Ni/ Al ₂ O ₃ synthesized by MAS at different temperature ranges.	79
Table 3.1.4.	Surface parameters of Al ₂ O ₃ , Pt- Al ₂ O ₃ , and Ni- Al ₂ O ₃ nanocatalysis using RCE method.	96
Table 3.1.5.	H_2 –chemisorptions data of Pt/ Al_2O_3 and Ni/ Al_2O_3 catalysts using RCE method.	96
Table 3.1.6:	Weight losses from thermal analysis of Pt or Ni/ Al ₂ O ₃ synthesized by RCE method.	98
Table 3.1.7:	Surface parameters of SiO ₂ , and Pt/SiO ₂ and Ni/ SiO ₂ nanocatalyss prepared by MAS.	114
Table 3.1.8:	H_2 –chemisorptions data of Pt/ SiO_2 and Ni/SiO_2 catalysts prepared by MAS.	114
Table 3.1.9:	Weight losses from thermal analysis of Pt or Ni/ Al_2O_3 synthesized by MAS.	116
Table 3.1.10:	Surface parameters of SiO ₂ , and Pt/SiO ₂ and Ni/ SiO ₂ nanocatalysis.	131
Table 3.1.11:	H_2 –Chemisorptions data of Pt/ SiO_2 and Ni/ $SiO_2catalysts$.	131
Table 3.1.12:	Weight losses from thermal analysis of Pt or Ni/SiO ₂ synthesized by RCE.	133
Table 3.1.13:	Conductivity σ_{AC} (S/m) of catalyst samples and dielectric constant $\dot{\epsilon}$.	148
Table 3.2.1:	Surface parameters and average crystallite size from XRD of A, AC ₁ , AC _{2.5} and AP supports	154
Table 3.2.2:	Weight losses from thermal analysis of different alumina supports.	158
Table 3.2.3:	Surface parameters of nano support Al ₂ O ₃ , and optimum of Ni-AC _{2.5} & Pt-AC _{2.5} nanocatalysts by US and MAS method.	162

Table 3.2.4:	Weight losses from thermal analysis of AC _{2.5} nanosupport and optimum of Ni-Al & Pt-Al nanocatalysts by US and MAS methods.	165
Table 3.2.5:	Catalytic conversion of n-hexane, cyclohexane and ethanol over Pt $/AC_{2.5}$ and Ni $/AC_{2.5}$ with different Pt & Ni loadings by US and MAS.	176
Table 3.2.6:	Surface characteristics of silica support synthesized from different precursors and according to different modifications.	181
Table 3.2.7:	Weight losses from thermal analysis of S_1 , S_1P and S_1C .	187
Table 3.2.8:	Weight losses from thermal analysis of S_1 , S_1P and S_1C .	189
Table 3.2.9:	Weight losses from thermal analysis of sol-gel precursor mixture of silica using P123 before calcination and S_1P .	190
Table 3.2.10:	Weight losses from thermal analysis of sol-gel precursor mixture of silica using CTAB before calcination and S_1C .	190
Table 3.2.11:	Surface parameters of S_1 nanosupport and $0.9 Pt/S_1$ & $5 Ni/S_1$ nanocatalysts by ultrasonic and microwave method.	195
Table 3.2.12:	Surface parameters of S ₁ C nanosupport and 0.9Pt/S ₁ C & 5Ni/S ₁ C nanocatalysts by ultrasonic and microwave method.	195
Table 3.2.13:	Catalytic conversion of n-hexane, cyclohexane and ethanol over (Pt $/S_1$, Pt/ S_1 C) and (Ni/ $/S_1$, Ni/ S_1 C) with different Pt & Ni loadings by US and MAS.	215
Table 3.3.1:	Surface characteristics of Mil-101 and Mil-101-B.	225
Table 3.3.2:	Surface characteristics of Mil-101, Pt/Mil-101 and Ni/Mil-101.	230

LIST OF FIGURES

		Page
Fig. 1.1.	The Surfactant Templating Method.	16
Fig. 1.2.	Common surfactants.	17
Fig. 1.3.	Unit cell of MIL-101.	59
Fig. 2.1.	Microwave apparatus.	61
Fig. 2.2.	Ultrasonic apparatus.	66
Fig. 2.3.	The Pulse micro catalytic unit.	71
Fig. 3.1.1 (a).	N_2 adsorption-desorption isotherms of alumina and Pt/alumina prepared by MAS.	75
Fig. 3.1.1 (b).	Pore size distribution curve of alumina and Pt/alumina prepared by MAS.	75
Fig. 3.1.2 (a).	N ₂ adsorption-desorption isotherms of alumina and Ni/alumina prepared by MAS.	75
Fig.3.1.2 (b).	Pore size distribution curve of alumina and Ni/alumina prepared by MAS.	75
Fig. 3.1.3 (a).	XRD of alumina and Pt/alumina prepared by MAS.	77
Fig. 3.1.3 (b).	XRD of alumina and Ni/alumina prepared by MAS.	77
Fig. 3.1.4 (a).	TGA of alumina and Pt/ alumina with different platinum percentages.	79
Fig. 3.1.4 (b).	DSC of alumina and Pt/ alumina with different platinum percentages.	79
Fig. 3.1.5 (a).	TGA of alumina and Ni/ alumina with different nickel percentages.	79
Fig. 3.1.5 (b).	DSC of alumina and Ni/ alumina with different nickel percentages.	79
Fig. 3.1.6 (a).	TEM micrographs of pure γ -Al ₂ O ₃ (A), 0.3% Pt/Al ₂ O ₃ (B), 0.6% Pt/Al ₂ O ₃ (C) and 0.9% Pt/Al ₂ O ₃ (D).	81
Fig. 3.1.6 (b).	TEM micrographs of 1% Ni/Al $_2$ O $_3$ (E), 3% Ni/Al $_2$ O $_3$ (F) and 5% Ni/ Al $_2$ O $_3$ (G).	81
Fig. 3.1.7.	Catalytic conversion of n-hexane over Pt /alumina with different Pt loadings: 0.3% (A), 0.6% (B) and 0.9% (C) by MAS.	83

Fig. 3.1.8.	Catalytic conversion of n-hexane over Ni / alumina with different Ni loadings: 1% (A), 3% (B) and 5% (C) by MAS.	84
Fig. 3.1.9.	Catalytic conversion of cyclohexane over Pt /alumina with different Pt loadings: 0.3% (A), 0.6% (B) and 0.9% (C) by MAS.	87
Fig. 3.1.10.	Catalytic conversion of cyclohexane over Ni /alumina with different Ni loadings: 1% (A), 3% (B) and 5% (C) by MAS.	88
Fig. 3.1.11.	Mechanisms of ethanol dehydration and dehydrogenation on oxides support.	90
Fig. 3.1.12.	Catalytic conversion of ethanol over Pt/alumina catalysts with different Pt loadings: 0.3% (A), 0.6% (B) and 0.9 % (C) by MAS.	91
Fig. 3.1.13.	Catalytic conversion of ethanol over Ni /alumina catalysts with different Ni loadings: 1% (A), 3% (B) and 5% (C) by MAS.	92
Fig. 3.1.14 (a).	N_2 adsorption-desorption isotherms of alumina and Pt/alumina prepared by RCE.	95
Fig. 3.1.14 (b).	Pore size distribution curve of alumina and Pt/alumina prepared by RCE.	95
Fig. 3.1.15 (a).	N_2 adsorption-desorption isotherms of alumina and Ni/alumina prepared by RCE.	95
Fig. 3.1.15 (b).	Pore size distribution curve of alumina and Ni/alumina prepared by RCE	95
Fig. 3.1.16 (a).	XRD of alumina and Pt/alumina prepared by RCE.	98
Fig. 1.1.16 (b).	XRD of alumina and Ni/alumina prepared by RCE.	98
Fig. 3.1.17 (a).	TGA of alumina and Pt/ alumina with different platinum percentages by RCE.	99
Fig. 3.1.17 (b).	DSC of alumina and Pt/ alumina with different platinum percentages by RCE.	99