AIN SHAMS UNIVERSTY FACULTY OF ENGINEERING ELECTRICAL POWER & MACHINE DEPARTMENT

ACTIVE FILTERS APPLICATION FOR METRO AC SUBSTATIONS

The thesis submitted in Partial Fulfillment of Doctor of Philosophy degree in Electrical power engineering

By

Eng. \ Ashraf Magid Rezkalla

B. Sc., M.Sc.

Supervised by

Prof. Dr. \ M. A. L. Badr

Prof. Dr.\ Adel Y. Hannalla

Prof. Dr. \ Mohamed H. EL-Shafey

Prof. Dr. \ M. Abdel-Rahman

Faculty of Engineering Ain Shams University

AIN SHAMS UNIVERSTY FACULTY OF ENGINEERING ELECTRICAL POWER & MACHINE DEPARTMENT

APPROVAL SHEET

ACTIVE FILTERS APPLICATION FOR METRO AC SUBSTATIONS

Presented by Eng. Ashraf Magid Rezkalla

This thesis is submitted by in Partial Fulfillment of Doctor Philosophy degree in Electrical power engineering (power and Machines). The examining committee approve that the thesis meets the standard of the Ph.D. degree in electric power engineering

Examining committee

<u>Name</u>

<u>Signature</u>

Prof. Dr.\ Fahmy Metwaly Ahmed Bendary

Professor at faculty of Engineering, Banha University - Shobra

Prof. Dr.\ Ahmed Abdel Sattar Abdel Fattah

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

Prof. Dr.\ Adel Yousef Hannalla

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

Prof. Dr.\ Mohamed Abdel-Latif Bader

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

AIN SHAMS UNIVERSTY FACULTY OF ENGINEERING ELECTRICAL POWER & MACHINE DEPARTMENT

APPROVAL SHEET

ACTIVE FILTER S APPLICATION FOR METRO AC SUBSTATIONS

This thesis is submitted by *Eng.* \ *Ashraf Magid Rezkalla* in Partial Fulfillment of Doctor Philosophy degree in Electrical power engineering (power and Machines).

Approved by

Name

<u>Signature</u>

Prof. Dr. \ M. A. L. Badr

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

Prof. Dr.\ Adel Y. Hannalla

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

Prof. Dr. \ M. Abdel-Rahman

Professor of electrical engineering, department Faculty of engineering, Ain-Shams University

Prof. Dr. \ Mohamed H. EL-Shafey

Professor of computer engineering department, Faculty of engineering, Ain-Shams University

STATEMENT

This thesis is submitted to Ain Shams university in partial fulfillment of the requirement for the degree of Doctor Philosophy in Electrical power engineering (power and Machines).

The work included in this thesis is carried out by the author at the electrical power and Machines department, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Ashraf Magid Rezkalla Cairo 2016

Acknowledgement

Thanks forever to **GOD** for giving me the opportunity of being the person that I am and for endowing me with strength and eagerness to improve and develop myself both practically and spiritually.

I would like to express my deep sincere gratitude to **Prof. Dr.** \ **Mohamed Abd El-Latif Badr** for his faithful and constant supervision, guidance and encouragement over a number of years.

Acknowledgment is also due to *Prof.Dr. Adel Y. Hanna Alla* for his continuous and wholehearted assistance and encouragement throughout the accomplishment of this thesis.

I wish to express my deepest gratitude and respect to **Prof.Dr.** \ **M. Abdel-Rahman**, for his meticulous supervision, and his continuous encouragement.

And too I wish to express my deepest gratitude and respect to **Prof. Or.** \ **Mohamed H. EL-Shafey** Computer engineering department, Faculty of engineering, Ain-Shams University, for his meticulous supervision, and his continuous encouragement.

At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me.

Last but not least, I am grateful to my parents and my wife for their patience, support and encouragement during the research period.

Eng. \ Ashraf Magid
2016

Dedicated to my mother, father, sisters and brother, the greatest family on earth.

And above all, beloved wife (Neveen) and my children (Verena, Yoanna, Mina) for being so patient with me.

They were always there to encourage and support me.

Eng. \ Ashraf Magid

2016

Abstract

Non linear loads, such as switch mode power supplies, and adjustable speed drives in three phase three wires power distribution systems can cause line current and voltage system distortions.

The non linear loads on three phases three wires power distribution system are produced dominantly by 5th and 7th order harmonic currents. Increasing of harmonics current on electric power distribution system leads to degradation of system performance. To reduce the harmonic currents on power distribution system the 5th and 7th order harmonic currents components should be minimized.

In Cairo METRO network system, diode rectifiers are commonly used in the front end of a power converter as an interface with the electric dc Metro network supply system. Rectifiers are nonlinear in nature and, consequently, generate harmonic currents into the ac power source. The nonlinear operation of the diode rectifiers causes highly distorted input current on the ac side of the system. The non-sinusoidal shape of the input current drawn by the rectifiers causes a number of problems in the sensitive electronic equipment and in the power distribution network. The distorted input current flowing through the system produces distorted voltages at the point of common coupling (PCC).

The recommended practice, IEEE- 519, and IEC 1000-3 has evolved to maintain utility power quality at acceptable levels. In order to meet requirements, a cost-effective and economical solution to mitigate harmonics generated by power electronic

equipment is currently of high interest. One approach is to use 12-pulse converter configuration; using a phase shift power transformer to achieve low harmonics content at the ac line current and low ripple at the dc output voltage. This method is currently used in Metro system rectifier station to improve system power quality. This method, however, includes bulky transformer equipment, and does not completely eliminate the required harmonics.

The proposed solution for system power quality improvement in this research is to use the usual conventional rectifier stations with active harmonic filter by using micro controller model technique. This system reduces the THD in the ac source current from 9% to 3% and also reduces the ripples in the dc output voltage; with the advantage of simple, lower source voltage THD, size, and cost.

LIST OF CONTENTS

ACKNOWLEDGMENT	
DEDICATION	
ABESTRACT	I
LIST OF CONTENTS	Ш
LIST OF FIGURES	VII
LIST OF TABLES	X
LIST OF SYMBOLS	XI
LIST OF ABBREVIATIONS	XII
CHAPTER 1: INTRODUCTION	1
1.1 General out-look on the Metro system	2
1.1.1 Energy supply of line one	3
1.1.2 Energy of line two	3
1.2 Power supply of Metro networks	4
1.3 Traction and lighting bus-bars 20 kV	6
1.4 Objectives of the Thesis	7
1.5 Harmonic Limitations	8
1.6 Harmonic Limits for current and voltage	8
1.7 Point of Common Coupling (PCC)	10
1.7.1 Definitions	10
1.7.2 Application of the PCC notification	12
1.8 Total Demand distortion (TDD) meaning	13
1.9 Examples	14
1.9.1 Example 1: Station at Full Load	14

	1.9.2 Example 2: Station at Partial Load	15
1	.10 Voltage at PCC due to non-linear Loads	16
1	.11 Definitions of Power by (Budeanu)	17
1	.12 Definitions of Power by (Fryze)	20
1	.13 Definitions of Power in 3- Phase network	22
1	.14 Active power methodologies line condition	23
1	.15 Active filters types based on the speed and rating power of response in compensated grid	23
1	.16 Low Power Applications	24
1	.17 Medium Power Applications	25
1	.18 High Power Applications	25
1	.19 Thesis Methodology	26
1	.20 Thesis outlines	27
СНАРТЕ	R 2: LITERATURE REVIEW OF HARMONICS	
	Harmonic history	28
	2 Background	28
	3 Frequency of harmonics	30
	Harmonic sources	32
2.5	Effects of Harmonic Distortion	32
	2.5.1 Impacts of harmonics on rotary equipments	33
	2.5.2 Harmonics' effect on the transformers	33
	2.5.3 Harmonics' effect on the cables and lines	34
	2.5.4 Effect of the harmonics in converter devices	35
	2.5.5 Harmonics' effect in protection networks	35

	2.6 Effects of Harmonics on Capacitor Banks	36
	2.7 Types of harmonics filters	36
	2.8 Non-linear load in the 3-phase	37
	2.9 Minimization of harmonic methods	38
	2.9.1 Passive Filter	39
	2.9.2 The best solution is APF	40
	2.10 Active filters configuration	45
	2.11 Methods of harmonic reduction	46
	2.12 Basic Theory of PWM Rectifier	49
CHAI	PTER 3: HARMONIC ANALYSIS	
	3.1 Introduction	52
	3.2 Harmonic analyses	53
	3.3 Power Factor in in Linear Loads Only	56
	3.4 Power factor at the harmonic network	57
	3.5 How true Mitigation of Harmonics Improved performance	
	power factor	60
	3.6 Effect of the Harmonic Currents on the Impedance	61
	3.7 Voltage Distortion calculation	63
	3.8 Manual Calculation of Volts distortion	65
CHAI	PTER 4: CORRECTION APPLIED BY ACTIVE FILTER	
	4.1 What is the problem?	70
	4.2 Metro system configuration and analysis	70
	4.3 Equipment used	72
	4.4 Additional measurements	74
	4.5 Selection of suitable IPQC's for Metro system	75

4.6 Computer modeling and simulation	76
4.7 Summary of simulation	77
4.8 Active power harmonic filter	78
4.8.1 Correction applied by active filter	79
4.8.2 construction of active harmonic power filter	80
4.8.3 Digital control for active filter	81
CHAPTER 5: Conclusions and Recommendations for future work	
5.1 Conclusions	85
5.2 Recommendations for future work	87
REFERENCES	88
PUBLICATION OUT OF THE THESIS	92
APPINDEX ADMC 330 DATA SHEET	

LIST OF FIGURES

CHAPTER 1

	Figure 1.1 Diagram of Rectiller station	4
	Figure 1.2 Single line diagram for Metro substation	5
	Figure 1.3: Six bus-bars 20 kV single diagram	6
	Figure 1.4 Applications Guide for PCC	10
	Figure 1.5 Example Power network	15
	Figure 1.6 Voltage at PCC due to non-linear Loads	17
	Figure 1.7 Active filters Class based on power rating	24
СНАРТ	TER 2	
	Figure 2.1 Fundamental with 3 rd and 5 th harmonics	29
	Figure 2.2 Fundamental frequency and several harmonics	30
	Figure 2.3: Basic connection diagram of protection relay	35
	Figure 2.4: Effect of capacitor size on parallel resonant frequency	37
	Figure 2.5: Three phase diode bridge rectifier	37
	Figure 2.6: Input current and voltage waveform	38
	Figure 2.7 Passive filter	39
	Figure 2.8 Basic schemes and typical line current waveforms	40
	Figure 2.9 Diagram for Active filter	41
	Figure 2.10 Active filter with current waveform	42
	Figure 2.11 Typical PWM for Drive Input Current Waveform	43 44

	Figure 2.12 Active Filter (Compensation Current) Waveform	
	Figure 2.13 Source Current Waveform	44
	Figure 2.14 Typical Active Filter behavior	45
	Figure 2.15 Basic configuration of a APF	46
	Figure 2.16 Most popular harmonic reduction techniques	47
	Figure 2.17 Active filters with non-linear load	48
	Figure 2.18 Typical six-Pulse width modulation	50
	Figure 2.19 6-Pulse AC PWM Drive Input Current Waveforms	51
	Figure 2.20 Rank of harmonic for six-Pulses	51
СНАРТ	TER 3	
	Figure 3.1 Current waveform distortions	56
	Figure 3.2 Power Factor Components in System	56
	Figure 3.3 Power Factor Components in System with Harmonics	57
	Figure 3.4 Distorted Currents and Voltage	61
	Figure 3. 5 Voltage drop by Harmonic	62
СНАРТ	TER 4	
	Figure 4.1 C.A 8334B power analyzer	72
	Figure 4.2 Measured Is for traction bus-bar # 3F "TB3F"	73
	Figure 4.3 Measured Vpcc waveform and harmonic for RS	73
	Figure 4.4 Measured V _{pcc} waveform	73
	Figure 4.5 Measured Is for bus-bar # 1F "LB1F"	74

Figure 4.6 Construction of active power harmonic filter	76
Figure 4.7 Simulated Is for RS with active filter	78
Figure 4.8 Active filter by source current detection	79
Figure 4.9 Shunt active filter single line diagram	80
Figure 4.10 construction of active harmonic filter	81
Figure 4.11 Schematic diagram of DSP	82
Figure 4.12 PIN CONFIGURATION 80-Lead	83
Figure 4.13 Active filter inverter diagram	84