

Ain Shams University Faculty of Medicine General Surgery Department

# HCC Recurrence after Liver Transplantation

### Essay

Submitted for Partial Fulfillment of Master Degree In General Surgery

By
Ahmad Mahmoud Gabr Mohamed
(M.B.B.Ch.)

Supervisors Prof. Dr.

## Mohammed Helmy Shehab

Professor of General Surgery
Faculty of Medicine Ain Shams University **Prof. Dr.** 

# **Hany Saeed Abdelbaset**

Assistant Professor of General Surgery Faculty of Medicine-Ain Shams University **Dr**.

# **Mohammed Magdy Abdul-Aziz**

Lecturer of General Surgery
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University **2014** 

# **Acknowledgement**

First and foremost, I feel always indebted to **ALLAH**, the most kind and the most merciful.

I wish to offer my great gratitude to **all my dear supervisors** for giving me the privilege of working under their supervision, which made the guidelines for this essay and for their generous support.

My deep gratefulness is to my parents & my brothers, for their guidance, generous support and unlimited love.

Ahmad Mahmoud Gabr 2014

### LIST OF CONTENTS

- Acknowledgment.
- List of the Abbreviations.
- List of Figures.
- List of Tables.
- Introduction.
- Aim of the Work.
- Review of Literature:

- Risk factors for recurrence.
- Incidence of recurrence.
- Pattern of recurrence.

- Summary &Conclusion.
- References.
- ◆ Arabic Summary.

<sup>\*</sup> Liver Transplantation for HCC.

<sup>\*</sup>Recurrence of HCC Post Liver Transplantation.

<sup>\*</sup> Liver Transplantation Vs Liver Resection in Management of HCC.

<sup>\*</sup>Management of HCC Recurrence Post Liver Transplantation.

# LIST OF ABBREVIATIONS

| HCC   | Hepatocellular Carcinoma                      |
|-------|-----------------------------------------------|
| ALF   | acute liver failure                           |
| LT    | Liver transplantation                         |
| OS    | Overall survival                              |
| DFS   | Disease free survival                         |
| UNOS  | United Network of Organ Sharing               |
| UCSF  | University of San Francisco                   |
| MELD  | The Mayo end-stage liver disease              |
| INR   | international normalized ratio                |
| ACLF  | acute-on-chronic liver failure                |
| DDLT  | Deceased Donor Liver Transplantation          |
| LDLT  | Living Donor Liver Transplantation            |
| AFP   | Alpha Feto Protein                            |
| PIVKA | Protein Induced Vitamin K Antagonist          |
| CT    | computed tomography                           |
| PET   | positron emission tomography                  |
| IVC   | Inferior vena cava                            |
| PV    | Portal Vein                                   |
| ECD   | Extended Criteria Donor                       |
| OPTN  | Organ Procurement and Transplantation Network |
| MHV   | middle hepatic vein                           |
| A2ALL | Adult-to-Adult LDLT                           |
| MC    | Milan criteria                                |
| CMC   | Conventional Milan Criteria                   |
| BCLC  | Barcelona Clinic Liver Cancer                 |
| CLIP  | Cancer of the Liver Italian Program           |
| LR    | Liver Resection                               |
| PLT   | Primary Liver Transplantation                 |
| ITT   | intention-to-treat                            |
| TACE  | transarterial chemo-embolization              |
| RFA   | radiofrequency ablation                       |
| EI    | alcohol injection                             |
| TACI  | Transarterial Chemo-Infusion                  |

| HVPG | Hepatic Vein Pressure Gradient        |
|------|---------------------------------------|
| PLT  | Platelet                              |
| OLT  | Orthotopic Liver Transplantation      |
| IM   | Intrahepatic Metastasis               |
| SLT  | Salvage Liver Transplantation         |
| MRI  | Magnetic Resonance Imaging            |
| IMRT | intensity modulated radiation therapy |
| SBRT | stereotactic body radiation therapy   |
| IAT  | intra-arterial therapy                |
| HBV  | Hepatitis B Virus                     |
| HCV  | Hepatitis C Virus                     |
| HIV  | Human Immunodeficiency Virus          |

# LIST OF FIGURES

| Fig 1 | Events in evolution of LT for HCC.                                                                                                                                                                                                                                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig 2 | The HCC weather forecast Cartesian plot.                                                                                                                                                                                                                                      |
| Fig 3 | Interrelationship between graft volume, hepatic inflow and outflow, and bile-duct anastomosis for determining the technically successful living donor liver transplantation.                                                                                                  |
| Fig 4 | Split liver transplantation to two adult recipients in order to expand the donor pool at Asan Medical Center. This is the first time that this procedure was performed in Korea,                                                                                              |
| Fig 5 | in August 2003.  Segmental anatomy of the liver using the Couinaud's segments.                                                                                                                                                                                                |
| Fig 6 | Most commonly used graft for adult-to-adult LDLT. (A) Right lobe graft, (B) Left lobe graft.                                                                                                                                                                                  |
| Fig 7 | Characteristics of 10 studies comparing outcomes after transplantation and resection, respectively, in patients with early hepatocellular carcinoma.                                                                                                                          |
| Fig 8 | Recurrence following liver transplantation.  Axial (A) and coronal images (B)  demonstrating intrahepatic recurrence. Axial  (C) and sagittal images (D) demonstrating  bone metastasis of the spine.                                                                         |
| Fig 9 | Examples of computed tomography (CT) images (left panels) and their corresponding <sup>18</sup> F–fluorodeoxyglucose (FDG) positron-emission tomography (PET) images (right panels) for studies with a standardized uptake value of (A) 4.0 or greater and (B) less than 4.0. |

|        | Survival after HCC recurrence following liver   |
|--------|-------------------------------------------------|
|        | transplantation: Comparison of resectable       |
| Fig 10 | (solid) vs. unresectable (dotted line) patients |
|        | (57% vs. 14% at 4-years, p=0.02); Used with     |
|        | permission: Regalia E, et al.: Pattern and      |
|        | management of recurrent hepatocellular          |

# LIST OF TABLES

|         | Model for End Ctore Liver Disease Come   |
|---------|------------------------------------------|
| TABLE 1 | Model for End-Stage Liver Disease Score. |
|         |                                          |
| TABLE 2 | Extended criteria for LT in HCC.         |
|         |                                          |
| TABLE 3 | Differences between Adult-to-adult LDLT  |
|         |                                          |
|         | and DDLT.                                |
|         |                                          |
| TABLE 4 | Hepatocellular Carcinoma Recurrence      |
|         | Following Orthotropic Liver              |
|         | Transplantation.                         |
| TABLE 5 | Patterns of recurrence of hepatocellular |
|         | carcinoma after liver transplantation    |
| TABLE 6 | Studies assessing surgical salvage of    |
|         | recurrent hepatocellular carcinoma after |
|         | liver transplantation.                   |

### **Introduction**

**Hepatocellular carcinoma** (HCC) is the fifth most common and the third most deadly cancer worldwide. More than half a million cases are identified and about a similar number die of the disease each year. HCC is closely associated with chronic liver disease and as many as 80% of cases occur in cirrhotic livers. Although liver resection and local ablation are regarded as potentially curative treatments, the limited functional reserve of the liver restricts their application and there is a high chance of recurrence in the liver remnant. Liver transplantation is the only treatment that offers a chance of cure for the tumor and the underlying cirrhosis by complete extirpation of both. The outcome of liver transplantation for early HCC in Western countries is encouraging, but the limitation of organ supply remains the main issue. Tumor frequently develops in a background of cirrhosis; the leading cause of liver cancer is viral infection with hepatitis B virus or hepatitis C virus. The cancer usually forms secondary to cirrhosis caused by these viruses. For this reason, the highest rates of liver cancer occur where these viruses are endemic, including East-Asia and sub-Saharan Africa. (Llovet, et al.2005)

Liver transplantation may be the best curative treatment for HCC. First, it removes the tumor with the widest margin together with any intrahepatic metastasis. Second, it cures the underlying cirrhosis that is responsible for both hepatic decompensation and metachronous tumor after partial hepatectomy. Finally, it allows the histological examination of the entire liver explant for the most accurate pathologic staging. The early results that focused primarily

on patients with advanced HCC were, however, poor because of frequent tumor recurrence. Over the last decade, there has been considerable improvement in the outcome of liver transplantation for HCC, which is attributed almost entirely to better patient selection rather than better surgery or adjuvant therapy. (Iwatsuki, et al.1991m)

The objective of the selection criteria for HCC is to set a transplantable limit in order to achieve survival duration comparable with that of other patients with benign liver disease receiving transplants, so as to justify or prioritize the allocation of a liver graft. For >10 years since the landmark study by Mazzaferro et al. in 1996, the Milan criteria have remained the gold standard. By restricting transplantation to patients with a solitary tumor up to 5 cm in diameter or with two to three tumor nodules each up to 3 cm in the absence of extrahepatic disease, 4-year overall and disease-free survival rates of 75% and 83%. respectively, can be achieved. Extended criteria, such as the University of California at San Francisco (UCSF) criteria, have been proposed to expand the tumor number-size limits to solitary tumor up to 6.5 cm or a maximum of 3 tumor nodules each up to 4.5 cm, and a total tumor diameter not exceeding 8 cm, without compromising patient survival. The traditional pathologic tumor-nodemetastasis staging system has poor predictive value for outcome after liver transplantation, and the University of Pittsburgh group has therefore modified the criteria by including specific tumor characteristics, such as lobar distribution (unilobar or bilobar) and type of vascular invasion (microscopic or macroscopic), into a staging classification with better prognostic value. The main drawback of the Pittsburgh criteria that limited its clinical application in practice was the need for information on difficult to vascular invasion, which is preoperatively without examining the liver explant. The

Milan and UCSF criteria are currently the most popular reference criteria in deciding the candidacy of patients with HCC for liver transplantation.(Jonas, et al,2001)

The limited availability of liver grafts not only restricts candidacy but also mandates a system of organ allocation according to priority. The prolonged waiting period frequently results in tumor progression to an extent beyond the transplantable criteria, leading to a patient's removal or dropout from the waiting list. Hence, intentionto-treat analysis is more appropriate. In a study from Spain, where the organ donation rate is the highest in the world and the average waiting time is <6 months, 23% of patients who met the Milan criteria dropped out and the 2-year intention-to-treat survival rate was only 54%. In another study from the U.S., the cumulative probabilities of dropout at 6, 12, and 24 months were 7.3%, 25.3%, and 43.6%, respectively. As a result of the high dropout rate for with HCC, the Organ Procurement patients Transplantation Network (OPTN) of the U.S. reconsidered the priority of liver graft allocation. While waiting list priority was determined primarily by liver disease severity based on the Model for End-Stage Liver Disease (MELD) score, patients with HCC that fulfilled the Milan criteria were registered with an adjusted score and were subsequently assigned additional scores at regular intervals to reflect their risk for dropout as a result of tumor progression. With such priority listing, the access to timely liver transplant for patients with HCC has improved in the U.S. (Yao, et al.2004)

Chronic inflammation in the cirrhotic liver promotes a dysplastic field. While transplantation offers the theoretic advantage of complete tumor excision with removal of the diseased liver, recurrence of HCC following OLT is the rate-limiting factor for long-term survival. Unfortunately,

HCC recurrence is reportedly as high as 40% after transplantation in the early days, nowadays Recurrence of HCC after transplantation remains a formidable problem in approximately 20% of patients despite refined selection criteria and exhaustive preoperative staging. Mechanisms of cancer recurrence include the presence of microscopic extrahepatic foci at the time of transplantation. Thus, HCC may resurface in the form of metastatic foci in distant organs, such as the lungs, brain, bone, and in the transplanted allograft. It is clear that several tumor-associated factors are prognostically important. Tumor size and the presence of vascular invasion have emerged as the most clinically significant characteristics for predicting recurrence. (Marsh, et al.1997).

Cancer recurrence following surgical intervention is the major limitation to long-term survival. Several authors suggest that the incidence of HCC recurrence is significantly higher following liver resection than after transplantation. Recurrent tumor after liver resection is predominantly intrahepatic. Conversely, recurrent HCC after OLT may present at distant sites, including lung, bone, and brain, as well as the transplanted allograft. Recurrent tumor generally presents within a short interval from the time of transplantation. This suggests that preoperative or intraoperative microscopic metastasis is responsible for recurrent disease. (Llovet, et al.2005)

Few treatment options are currently available for patients with recurrent cancer after OLT. Unfortunately, most present with disseminated disease and are not candidates for local ablative therapy. However, aggressive surgical intervention has recently been advocated for a subgroup of patients with localized recurrence. (Schwartz , et al. 2005)

# **Aim of the Work**

To review the incidence, pattern &risk factors of HCC recurrence after liver transplantation with stress on the early detection & early management for recurrence.

# LIVER TRANSPLANTATION FOR H.C.C

CHAPTER (1)

Today, liver transplantation is a lifesaving procedure for patients with chronic end-stage liver disease and acute liver failure (ALF) when there are no available medical and surgical treatment options. (*Murray, et al., 2005*)

# History and Evolution of Liver Transplantation for HCC

Liver transplantation for HCC is almost as old as LT itself. The early series of Thomas Starzl from Denver at the University of Colorado in 1963, had four HCC patients including two children. The longest survival achieved was 16 months and only two patients survived more than 1 year. (Starzl, et al., 1969)

Early series of LT from various centers in the 70s and 80s yielded poor results and prompted the US Department of Health to declare HCC as a contraindication to LT in 1980. The unflattering outcomes of LT for HCC (high early recurrence and 18–40% 5-year OS) could be largely attributed to inclusion of patients with large tumors, evolutionary phase of modern imaging, and evolving surgical techniques (Fig. 1).(*Penni*, 1991)