Faculty of Medicine Ain Shams University Dep. of Anesthesiology and Intensive Care

Anesthetic Considerations For Radiofrequency Ablation of Hepatoma

Essay

Submitted for Fulfillment of Master Degree in Anesthesiology

Presented by Mohamed Abd El Hamed Oweis Ibraheem

M.B.B.Ch, Faculty of Medicine, Cairo University

Under Supervision of

Prof. Galal Abo El Seoud Saleh

Professor of Anesthesiology and Intensive Care Faculty of Medicine Ain Shams University

Prof. Waleed Abd El Maged El Taher

Professor of Anesthesiology and Intensive Care Faculty of Medicine Ain Shams University

Dr. Ahmed Salah El Din Omran

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First and foremost, I thank **ALLAH** for every thing and especially for the steady steps I have been taking in my career

I would like to express my most sincere thanks and deepest gratitude to *Prof.Galal Abo El Seoud Saleh*, Professor of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University. I am deeply affected by his noble character, perfection, care and consideration. I am very much privileged and honored to have him as my supervisor. To him I owe much more than I express.

I am also grateful to *Prof. Waleed Abd El Maged El Taher*, Professor of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University, for her gracious supervision, valuable guidance, generous help, support and continuous encouragement.

Last but not least I would like to express my thanks and gratitude to *Dr. Ahmed Salah El Din Omran*, Lecturer of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University, for his remarkable efforts, valuable comments, sincere advices and kind care.

Finally no words can express the warmth of my feeling to my family for their patience and help.

Mohamed Abd El Hamed

Contents

Subject	Page
Introduction	1
Aim of the Work	3
Chapter (1): Physiology of The Liver	4
Chapter (2): Pathology of hepatocellular carcine	oma 10
Chapter (3): Radiofrequency Ablation for Hepa	tocellular
Carcinoma	19
Chapter(4): Anesthetic considerations for radiof	requency ablation of
hepatoma	33
Summary	63
References	66
Arabic Summary	

List of Abbreviations

ALT	: Alanine Transaminase
ALP	: Alkaline Phosphatase
AST	: Aspartate Transaminase
BCLC	: The Barcelona Clinic Liver Cancer
CBC	: Complete Blood Count
CT	: Computerized Tomography
CTP	: The Child-Turcotte-Pugh Score
DD	: Differential Diagnosis
DDAVP	: Diamino-8-D-Arginine Vasopressin
FFP	: Fresh-Frozen Plasma
FIO ₂	: Fraction Of Inspired Oxygen
HBV	: Hepaitits B
HCC	: Hepatocellular Carcinoma
HCV	: Hepaitits C
PPH	: Porto-Pulmonary Hypertension
HPS	: Hepato-Pulmonary Syndrome
HR	: Heart Rate
HRS	: Hepato-Renal Syndrome
ICU	: The Intensive Care Unit
IV	: Intravenous
MAP	: Mean Arterial Pressure
MELD	: The Model For End-Stage Liver Disease Score
MG/DL	: Milligrams Per Deciliter
MRI	: Magnetic Resonance Imaging
NK	: Natural Killer Cells
NKCC	: Natural Killer Cell Cytotoxicity

NMBA	: Neuromuscular Blocking Agent	
PACO ₂	: Partial Pressure Of Arterial Carbon Dioxide	
PAO ₂	: Partial Pressure Of Alveolar Oxygen	
PATM	: Atmospheric Pressure	
PBC	: Primary Biliary Cirrhosis	
PEEP	: Positive End-Expiratory Pressure	
PH ₂ O	: Partial Pressure Of Water Vapor At Body	
	Temperature	
PONV	: Post Operative Nausea And Vomiting	
PSC	: Primary Sclerosing Cholangitis	
RFA	: Radiofrequency Ablation	
Γ-GT	: Γ-Glutamyltranspeptidase	
TACE	: Transarterial Chemoembolization	
US	: Ultrasound	
VLDL	: Very Low Density Lipoproteins	
WHO	: The World Health Organization	

List of Figures

Figure	Title	Page
Chapter 2:		
Figure (2-1): Normal Li	iver Parenchyma	15
Figure (2-2): Microscop	oic Picture of HCC	15
Chapter 3:		
Figure (3-1): Radiofrequ	uency (RF) ablation of a	malignant liver
Tumor		24
Figure (3-2): A Tip of a	n expandable-type electro	ode

List of Tables

Table	Title	Page
Chapter 1:		
Table (1-1): The liver to	functions	4
Chapter 3:		
Table (3-1): Barcelona	-Clinic Liver Cancer criteria	the indications and
contraindi	cations for RFA of HCC	28
Chapter 4:		
Table (4-1): Clinical fe	eatures of cirrhosis	34
Table (4-2): Laborator	y tests and findings in cirrhos	is 37
Table (4-3): Diagnostic	c Criteria for the Hepatopulm	onary
Syndrome		43
Table (4-4): Diagnostic	c criteria for Hepatorenal syn	drome46
Table (4-4): Modified	Child-Turcotte-Pugh Score	49

Introduction

Introduction

Hepatocellular carcinoma (HCC) accounts for most liver cancers. This type of cancer occurs more in men than women and is usually seen in people aged 50 or older. The disease is more common in Africa and Asia than in North or South America and Europe. In most cases, the cause of liver cancer is usually scarring of the liver (cirrhosis) which may be caused by: alcohol abuse, autoimmune diseases of the liver, hepatitis B or C virus infection, chronic inflammation of the liver or hemochromatosis. Patients with hepatitis B or C are at risk for liver cancer, even if they have not developed cirrhosis (**Roberts**, **2011**).

Patients generally present with symptoms of advancing cirrhosis in the form of pruritis, jaundice, splenomegaly, variceal bleeding, cachexia, increasing abdominal girth (portal vein occlusion by thrombus with rapid development of ascites), hepatic encephalopathy, right upper quadrant pain, hepatomegaly, Dupuytren contracture, spider angiomata, periumbilical collateral veins and enlarged hemorrhoidal veins (Yasui et al, 2011).

Although the mainstay of therapy is surgical resection, the majority of patients are not eligible because of tumor extent or underlying liver dysfunction. Several other treatment modalities are available, including: liver transplantation, radiofrequency ablation (RFA), percutaneous ethanol or acetic acid ablation(Vanthey et al, 2010).

RFA is an exciting approach to destroy inoperable primary or metastatic tumors in the liver. In the treatment of HCC, less than 40% of patients are candidates for surgery, and the rate of recurrence after curative surgery is high. Percutaneous techniques like RFA are, therefore, very important. RFA serves as a bridge for transplant candidates. RFA is a minimally invasive, repeatable procedure with few complications. It is

INRODUCTION

performed under radiological guidance. Randomized controlled trials have shown that RFA is superior to ethanol injection in the treatment of small HCC. RFA results in a higher rate of complete necrosis and requires fewer treatment sessions than 'percutaneous ethanol injection (PET). Long-term survival rates are also better with RFA (Ansari and Anderson, 2012).

Chronic or end stage liver disease is associated with an increased risk of perioperative morbidity and mortality. It is essential to preoperatively assess possible hepatic encephalopathy, pleural effusions, hepatopulmonary syndrome, pulmonary hypertension, hepatorenal syndrome, cirrhotic cardiomyopathy, and coagulation disorders. The application of two, scoring systems, that is, Child-Turcotte-Pugh and model for end stage liver disease, helps to estimate the risk of surgery (Hoetzel et al., 2012).

Aim of work

Aim of work

The purpose of this work is to focus on recent literature about anesthetic considerations for radiofrequency ablation of hepatoma and risk profiles in this setting are presented.

Chapter (I):

Physiology of The Liver

PHYSIOLOGY OF THE LIVER

The liver, the largest gland in the body, has many complex functions, including those listed in the following table:

Table (1-1): The liver functions (Guyton and Hall, 2014).

- •Formation of bile.
- Carbohydrate storage and release.
- •protein metabolism.
- •Fat metabolism.
- •Cholesterol metabolism.
- Manufacture of plasma protein.
- •Inactivation of some polypeptide hormones.
- Reduction & conjugations of adrenocortical & gonadal steroid hormones.
- Synthesis of 25 hydroxycholecalciferol (Vit D).
- Detoxification of many drugs and toxins

1) Bile formation:

Bile is made up of bile salts, bile pigments, cholesterol and inorganic salts dissolved in an alkaline solution that resemble pancreatic juice. Some of the components of bile are reabsorbed in the intestine and then excreted again by liver (enterohepatic circulation)(Johnson et al,2004).

The bile salts are sodium salts of bile acids conjugated to glycine and taurins, a derivative of cysteine. Bile acids have an important hydrotropic effect where they reduce the surface tension of fat and in conjugation with phospholipids and monoglycerides are responsible for the solubilization of