Retrospective study in the prevalence of mesothelioma during the last 10 years A big centre study in Cairo University Hospitals

Thesis

Submitted in the Partial Fulfillment of Master Degree of Chest Diseases & Tuberculosis

PRESENTED BY

Fatema Alzahraa Saad Hamed M.B.B.CH

SUPERVISED BY

Prof. YOSRI MOHAMED AKL

Professor of chest diseases Faculty of medicine Cairo University

Prof. MOHAMED LOTAYEF

Ass. Professor of radiation oncology National Cancer Institute Cairo University

DR. AHMED ABDELHAFEEZ

Lecturer of Chest Diseases Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2008

Acknowledgements

First of all, thanks to "Allah" who enabled me to finish this piece of work appropriately

I would like to express my endless gratitude and appreciation to Prof. Yosry Mohamed Its Professor of Chest Diseases Faculty of Medicine, Cairo University who gave me opportunity to learn from his faithful advices and expanded experience. His constant support, encouragement and willing to teach and educate had pushed me forward through out this work and I am really honored to be his student and trainee.

My deep thanks are to **Prof. Mohamed Lotayef** Ass. Professor of Radiation Oncology, National Cancer Institute, Cairo University for his assistance in this work.

No wards can express my deep gratitude to **Dr. Ahmed Abdelhafeez** Lecturer of Chest Diseases Faculty of

Medicine, Cairo University for his continuous aid and

precious remarks and giving me much of his valuable time.

I would also like to express my warm feelings to all the staff members of chest department, Faculty of Medicine, Cairo University for their continuous encouragement and for giving me opportunity to learn and practice.

Finally I would like to thank my family for their continuous encouragement and great support all through my life.

Fatema Alzahraa Saad Hamed

LIST OF CONTENTS

	Page
Introduction & Aim of the Work	1
Review of Literature	4
Chapter (1):	
Pleura	4
Chapter (2):	40
Mesothelioma	
Chapter (3):	
Medical Thoracoscopy	82
Subjects & Methods	107
Results	112
Discussion	125
Summary	142
Conclusions & Recommendations	145
References	146
Appendix	
Arabic Summary	

LIST OF TABLES

Tables	Review	Page
Ch- No		
1-1	General causes of pleural effusions	19
2-1	Butchart staging system	<i>6</i> 8
2-2	The Brigham Staging System	6 8
2-3	IMIG staging system.	69
3-1	Indications of medical thoracoscopy	90
3-2	Advantages of diagnostic thoracoscopy	91
3-3	Absolute contraindications to medical thoracoscopy	91
3-4	Relative contraindications to medical thoracoscopy	92
3-5	Situations where thoracoscopic pleurodesis considered	94
3-6	Contraindications to pleurodesis	95
3-7	Thoracoscopic Talc insufflation with atomizer	97
3-8	Sequel of talc pleurodesis	98
3-9	Thoracoscopic chest tube pleurodesis at end of thoracoscopy with tetracycline or talc slurry	99
3-10	Risk of medical thoracoscopy	103
3-11	Early complications of medical thoracoscopy	103
3-12	Intermediate complications of medical thoracoscopy	104
3-13	Late complications of medical thoracoscopy	106

	RESULTS	
1	Total number of cases every three years.	112
2	Cases classified according to Age.	113
3	Cases classified according to sex.	113
4	Cases classified according to residence.	114
5	Cases classified according to occupation.	116
6	Cases classified according to clinical presentation.	116
7	Cases classified according to radiological presentation.	117
8	Cases classified according to procedure of taking biopsy.	117
9	Cases classified according to histopathological type.	118
10	Effect of pathological type on the OAS.	119
11	Modalities of treatment recieved.	120
12	Effect of different modalities of treatment on the OAS.	120
13	Effect of chemoth. vs. chemoth. + Surgery on the OAS.	121
14	Effect of surgery vs. chemoth. + Surgery on the OAS.	121
15	Effect of surgery vs. chemoth. On the OAS.	122
16	Effect of supportive vs. chemoth.+ Surgery on the OAS	122
17	The OAS of all cases.	124

LIST OF FIGURES

Fig Ch-No	Review	Page
1-1	The Pleura	4
2-1	Malignant Pleural Mesothelioma	40
2-2	Gross Picture of mesothelioma	58
2-3	Histopathological types of MPM	58
2-4	CXR, PA and Lat of MPM with pleural thinking.	64
2-5	CT chest of MPM with pleural thinking	64
2-6	Typical pleural nodules in MPM	65
2-7	MPM with massive pleural effusion	65
2-8	MPM with extra pleural extension to chest wall	66
2-9	Positron Emission tomography in MPM.	66
3-1	Medical thoracoscopy	82
3-2	Thoracoscopy, Trocars and Biopsy forceps.	85
3-3	Positioning of the patient	87
3-4	Tale insufflator	96
3-5	Drainage through chest tube	101
	RESULTS	
1	Total number of cases in every period.	112
2	Areas of mesothelioma in Egypt.	115
3	Increased number in areas of mesothelioma.	115
4	Predominance of epithelial type of MPM	118
5	Surgical procedures in management of MPM.	123

LIST OF ABBREVIATIONS

ADA	Adenosine Deaminase.
B. C	Before Christ.
B.C.G	Bacilli – Calmette – Guerin.
CA 15-3	Cancer Associated Antigen.
CA 19-9	Carbohydrate Antigen.
CEA	Carcino-emberionic Antigen.
CALGB	Cancer and Leukemia Group B.
CK5/6	Cytokeratine 5/6.
CD	Cluster of lymphocyte differentiation.
CT	Computed tomography.
DLco	Diffusion Lung Capacity.
DMM	Diffuse Malignant Mesothelioma.
DNA	Deoxyribonucleic acid.
ECOG	Eastern Cooperative Oncology Group.
EGF	Epidermal Growth Factor.
EORTC	European Organization for Research and Treatment of Cancer.
EPP	Extrapleural Pneumonectomy.
FDG	Fluorodeoxyglucose
FRC	Functional Residual Capacity.
F/ml	Fiber / milliliter.
GCV	Ganciclovir.
G	Gouge.
HSV <i>tk</i>	Herpes Simplex Virus thymidine kinase
IGF	Insulin Growth Factor.
IHC	Immunohistochemistry.
IL-2	Interleukin 2.
IL-6	Interleukin 6.
IMIG	International Mesothelioma Interest Group.
IMRT	Intensity Modulated Radiation Therapy.
IFN- γ	Interferon gamma.

IFN- α	Interferon alpha.
Leu M1	Leukocyte M1.
LDH	Lactate Dehydrogenase.
MAb	Monoclonal Antibody.
MPF	Megakaryocyte Potentiating Factor.
MPM	Malignant Pleural Mesothelioma.
MRI	Magnetic Resonance Imaging.
NCI	National Cancer Institute.
NF2	Neurofibromatosis type 2.
ODN	Oligodeoxyneocleotide
OAS	Overall survival.
PAO ₂	Alveolar Oxygen tension.
PAS-D	Periodic Acid Schiff after diastase digestion.
PCO ₂	Carbon dioxide tension.
PDGF	Platelet Derived Growth Factor.
P/D	Pleurectomy / Decortication.
PET	Positron Emission Tomography.
PH ₂ O	Water tension.
PN ₂	Nitrogen tension.
PPDs	Personal Protective Devices.
Rb	Retinoblastoma.
SMRP	Soluble Mesothelin Related Peptides.
SOB	Shortness of breath.
SV-40	Simian Virus 40.
T-Ag	T- Antigen.
TGF-β	Transforming Growth Factor β.
TNF	Tumor Necrotic Factor.
T.T.	Tuberculin test.
TTF-1	Thyroid Transcription Factor 1.
VATS	Video Assisted Thoracoscopic Surgery.
WTp53	Wilde Type of P53.
WT1	Wilm's Tumor 1.

ABSTRACT

Asbestos has been recognized in Egypt since a long time as ancient Egyptians were using it in mummification. Mesothelioma in Egypt is mainly attributed to environmental origin, although there may be many other causes such as SV-40 infection and genetic predisposition (*Gaafar and Ally Eldin, 2005*). Also there is high frequency of SV40 in Egyptian patients could be attributed to the polio vaccines that were prepared in Eastern Europe and distributed in many countries including Egypt (*Abderahman et al., 2007*).

The incidence of mesothelioma is rising in Egypt. Epidemiological data for 584 malignant pleural mesothelioma (MPM) patients over the last 10 years in the third Millennium were collected from the National Cancer Institute (NCI) and Cairo University. This number is more than four times the number diagnosed in the previous 11 years at NCI (*Gaafar, Aly Eldin, 2005*).

Whole Egypt is in a great danger and asbestos in Cairo is a silent killer and measures toward eliminating it entirely or at least strictly controlling human contact with this dangerous carcinogen have to be taken in order to combat the coming epidemic of mesothelioma in Egypt.

Key Words

Malignant Pleural Mesothelioma, Epidemiology, Asbestos.

INTRODUCTION

Before 1960 malignant mesothelioma was regarded as a very rare tumor of unknown aetiology (*Hillerdal*, 1983). Now there is a great concept that the incidence of mesothelioma depends on exposure to asbestos and the risk increases with specific types of asbestos fibers and increasing the dose of exposure to asbestos (*Bolton et al.*, 1982).

There is study that has shown DNA sequence resembling that of a monkey virus in human mesothelioma tissue. This virus contaminated some of the injected Salk poliomyelitis vaccine used in 1950s (*Carbone et al.*, 1996 and Pepper et al., 1996).

Approximately thousands of people each year die of mesothelioma in UK and this figure is rising annually. Unfortunately, the continued extensive use of asbestos for at least 20 years after the association with mesothelioma was described, together with the fact that once in place the mineral remains a threat to those who are required to remove or work with it, means that the epidemic of mesothelioma is likely to continue rising for further 20 years and even may be responsible for about 3000 death in UK each year (*Peto et al.*, 1995). Mesothelioma is now the most common of the serious dust-related diseases, as well as being the most fatal and even so there is no clear documented studies that explain the prevalence of mesothelioma in Egypt.

According to the site *Elmes and Simpson* in *1976* classified mesothelioma to either pleural, peritoneal or pericardial. The last two sites are much less common than the first one which will be the main axis in our study.

According to histological type *Whitwell et al.*, in *1977* classified mesothelioma into epithelial type, , sarcomatous type or mixed epithelial and sarcomatous type.

Diagnosis of mesothelioma depends on:

- 1. History of exposure to asbestos.
- 2. Radiographic features which are usually of large unilateral pleural effusion and if the pleura can be seen pleural nodules may be visible.
- 3. Biopsy from the pleura either by needle biopsy, thoracoscopic biopsy, open pleural biopsy or aspiration of pleural fluid which is usually difficult due to thick pleura.

The clinical course of mesothelioma is steady deterioration to death over one to two years although there is some evidence that patients with epithelial pattern have some what better prognosis over the other patterns (*Hillerdal*, 1984).

The prospects for curative treatment are not good: Management is either by surgery, radical radiotherapy and chemotherapy. Surgery is popular in USA and has a high mortality rate. Radiotherapy may produce some regression and also complications. Single agent chemotherapy and multiple regimens had been tried (*Boutin et al.*, 1994).

AIM OF THE WORK

This work is aiming to detect the increasing incidence of mesothelioma in Egypt over the last decade, and role of new techniques in diagnosis and management.

Chapter (1); Pleura

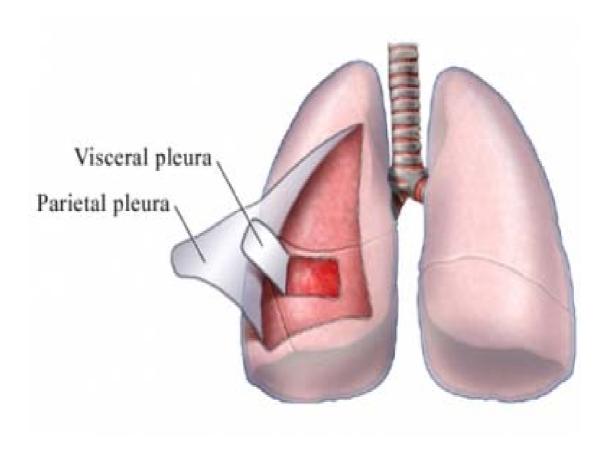


Fig (1-1); The Pleura

Healthlibrary.epnet.com

PLEURA

Anatomy of the Pleura

The pleura is the serous membrane that covers the lung parenchyma, the mediastinum, the diaphragm and the rib cage. This structure is divided into the visceral pleura and the parietal pleura. The visceral pleura covers the lung parenchyma, not only at its points of contact with the chest wall, diaphragm, and mediastinum, but also in the interlobar fissures. The parietal pleura lines the inside of the thoracic cavities. In accordance with the intrathoracic surfaces that it lines, it is subdivided into the costal, mediastinal, and diaphragmatic parietal pleura. The visceral and the parietal pleura meet at the lung root. At the pulmonary hilum, the mediastinal pleura is swept laterally onto the root of the lung. Posterior to the lung root, the pleura is carried downward as a thin double fold called the pulmonary ligament (*Gray and Skandalakis*, 1985).

A film of fluid (pleural fluid) is normally present between the parietal and the visceral pleura. This thin layer of fluid acts as a lubricant and allows the visceral pleura covering the lung to slide along the parietal pleura lining the thoracic cavity during respiratory movements. The space or potential space between the two layers of pleura is designated the pleural space. The mediastinum completely separates the right from the left pleural space. As previously mentioned only a thin layer of fluid is normally present in this space so it is a potential rather than an actual space (*Light*, 2007).

Embryology of the pleura and pleural space

The body cavity in the embryo, the celomic cavity, is a U-shaped system with the thick bend cephalad. The cephalad portion becomes the pericardium and communicates bilaterally with the pleural canals, which in turn communicate with the peritoneal canals.

As the embryo develops, the celomic cavity becomes divided into the pericardium, the pleural cavities, and the peritoneal cavity through the development of three sets of partitions: (a) the septum transversum, which serves as an early, partial diaphragm; (b) the pleuropericardial membranes, which divide the pericardia and pleural cavities: and (c) the pleuroperitoneal membranes, which unite with the septum transversum to complete the partition between each pleural cavity and the peritoneal cavity. This newly formed pleural cavity is fully lined by a mesothelial membrane, the pleura.

When the primordial bronchial buds first appear, they and the trachea lie in a median mass of mesenchyme cranial and dorsal to the peritoneal cavity. This mass of mesenchymal tissue is the future mediastinum and separates the two pleura cavities. In humans, no communication normally exists between the two pleura cavities. As the growing primordial lung buds bulge into the right and left pleural cavities, they carry with them a covering of the lining mesothelium, which becomes the visceral pleura. As the separate lobes evolve they retain their mesothelial covering. This covering becomes the visceral pleura in the fissures. The lining mesothelium of the pleural cavity becomes the parietal pleura (*Gray and Skandalakis*, 1985).