

HYDRODYNAMIC MODELING AND CONTROL FOR A REMOTELY OPERATED VEHICLE

By

Nabil Mamdouh Mohamed Mahmoud Khalifa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE in Aerospace Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

HYDRODYNAMIC MODELING AND CONTROL FOR A REMOTELY OPERATED VEHICLE

By

Nabil Mamdouh Mohamed Mahmoud Khalifa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE in **Aerospace Engineering**

Under the Supervision of

Prof. Gamal El-Bayoumi Prof. Basman ElHadidi Bladed

Professor

Aerospace Engineering Department

Aerospace Engineering Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Asst. Prof. Osama Saaid

Assistant Professor

Aerospace Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

HYDRODYNAMIC MODELING AND CONTROL FOR A REMOTELY OPERATED VEHICLE

By

Nabil Mamdouh Mohamed Mahmoud Khalifa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Approved by the Examining Committee

Prof. Gamal El-Bayoumi, Thesis Main Advis

Prof. Basman ElHadidi, Advisor

Prof. Mohamed Madbouli, Internal Examiner

Prof. Gamal Ahmed EL Sheikh,

Pyramids Higher Intitute for Engineering and Technology

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2018

Engineer's Name:

Nabil Mamdouh Mohamed Mahmoud Khalifa

Date of Birth:

29/01/1992

Nationality:

Egyptian

E-mail:

nabilmamdouh@gmail.com

Phone:

+20 1227250195

Address:

Sheraton El-Matar, El-Nozha, Cairo, Egypt

Registration Date:

1/10/2013

Awarding Date:

...../2018

Degree:

Master of Science

Department:

Aerospace Engineering

Supervisors:

Prof. Gamal El-Bayoum

Prof. Basman ElHadidi BELL

Asst. Prof. Osama Saaid

Examiners:

Prof. Gamal Ahmed EL Sheikh

Pyramids Higher Intitute

for Engineering and Technology

Prof. Mohamed Madbouli

Prof. Gamal El-Bayoumi

Prof. Basman ElHadidi

External examiner

Internal examiner

Thesis main advisor

Advisor

Title of Thesis:

Hydrodynamic Modeling and Control for a Remotely Operated Vehicle

Key Words:

ROV; Maneuvering theory; Virtual Planar Motion Mechanism; Hydrodynamic coefficients; System dynamics assessment

Summary:

A remotely operated vehicle was designed and tested to assess the hydrodynamic coefficients calculation techniques. Drag terms were found using steady Computational Fluid Dynamics simulations. Added mass terms were found through unsteady CFD simulations for Planar Motion Mechanism test. System dynamics from experimentation and nonlinear simulator using coefficients was compared to judge them. Results showed that added mass terms were correctly estimated while rotational drag terms were erroneous and linear ones were acceptable.

Dedication

This Thesis is dedicated to:

My Mother

This unique, strong and irreplaceable woman, who stood by my side through the highs and lows & taught me the true meaning of never giving up..

My Late Father

Who has always been in my thoughts & prayers, and i was doing this for more than most..

My Family

Whose support has been a true blessing and their understanding made the sour times much more bearable..

And Lastly my Future Family This is for you, may this be a source of pride and joy one day.

Acknowledgements

Special Thanks to those people who helped me willingly, with absolutely no return, without whom i would have not excelled in many parts..

Dr Basman, who never held back anything, and stood by my side both academically and personally. I give you my sincere gratitude for all the support you offered me through my thesis crafting journey.

Dr. Osama, who was my friend before my mentor, Who went in knees-deep to make sure that this work comes out to light in the absolutely best way.

Eng. Wael Bakr - MCS CEO, thank you for giving me the chance to see my passion come to life, and for helping me grow on the personal level as well as the professional level.

MCS Team,I'm forever grateful for your support and understanding. Special thanks to Eng. Shaheen whose designs were indispensable to our work, and to Tech. Sheba who didn't spare any effort through the Experimental Testing phase.

Eng. Omar Magdy & Eng. Mostafa Zaki, for all the time and effort you dedicated to my work, and for all the knowledge we gained together down the road.

Moreover, special thanks to all the third party teams who took this thesis as their own, to my friends who put up with my turbulent moods and supported me emotionally and mentally and to Tech Sameh Saeed who was my one-man production team for a long time.

Last but not least, Professor Thor Fossen, thank you for helping out an unknown student who has nothing in common with you but his true love to the science.

Table of Contents

DEDIC	ATION	i
ACKNO	WLEDGEMENTS	iii
TABLE	OF CONTENTS	v
LIST O	F TABLES	viii
LIST O	F FIGURES	ix
NOME	NCLATURE	xiii
ABSTR	ACT	xix
СНАРТ	ER 1: INTRODUCTION	1
1.1	Objectives	1
	1.1.1 Current Usage	1
	1.1.2 Solution and Advantages	2
1.2	Literature Review	3
1.3	Thesis layout	4
СНАРТ	ER 2: MODELING	5
2.1	Non-Dimensional Numbers	5
2.2	Kinematics	6
	2.2.1 References Frames	6
	2.2.2 Motion Variables in Body Axes	
	2.2.3 Motion Variables in North-East-Down Axes	7
	2.2.3.1 Linear Velocity Transformation	7
	2.2.3.2 Angular Velocity Transformation	7
2.3	Kinetics	8
2.4	Forces	9
	2.4.1 Hydrostatic Forces	9
	2.4.2 Added Mass forces	10
	2.4.2.1 Proof & Theory	10
	2.4.2.2 Added Mass Matrix	12
	2.4.2.3 Finding Added Mass Terms	13
	2.4.3 Damping forces	14
2.5	ROV Model	15
	2.5.1 Kinematics Assumptions	16
	2.5.2 Kinetics Assumptions	16

CHAPT	TER 3: DERIVATIVES	19
3.1	Drag Forces	19
	3.1.1 Linear Velocity Derivatives	19
	3.1.1.1 Grid Generation	20
	3.1.1.2 Simulation Models and Boundary Conditions	21
	3.1.1.3 Grid Sensitivity Results	24
	3.1.1.4 Coefficients	27
	3.1.2 Angular velocity derivatives	29
	3.1.2.1 Grid Generation, Simulation and Results	29
3.2	Added Mass	35
	3.2.1 Theory and Methodology	35
	3.2.1.1 Slow Motion Derivative	35
	3.2.1.2 Oscillatory Coefficient	36
	3.2.2 2D Cylinder Validation	37
	3.2.3 3D PMM Test Simulations	42
	3.2.3.1 CFD Simulation Properties	42
	3.2.3.2 Surge, Sway and Heave Tests	44
	3.2.3.3 Roll, Pitch and Yaw Tests	51
3.3	Final Matrices	60
СНАРТ	TER 4: DESIGN AND IMPLEMENTATION	63
4.1	Constraints and design variables	63
4.2	Design layout	
	4.2.1 Outer shape	64
	4.2.2 Thrusters	65
	4.2.3 Frame	65
	4.2.4 Hardware and Layout	67
4.3	Manufacturing	
4.4	Mass and hydrostatic matrices	
СНАРТ	TER 5: DYNAMIC ASSESSMENT	73
	Control Inputs	73
3.1	5.1.1 Thruster Model	73
	5.1.2 Thruster Performance	74
	5.1.3 Formulating Inputs	77
5.2	Nonlinear Simulator	81
5.3	Experimental Implementation	81
5.4	Controllers	82
5.5	Parameter Assessment	86
5.5	5.5.1 Rotational DOF	93
	5.5.2 Translational DOF	103
	3.3.2 Halislational DOT	103
СНАРТ	TER 6: CONCLUSIONS	107
Append	ix A: EQUATIONS AND DERIVATIONS	112
	Kinetics and Kinematics equations	113
	Added Mass Derivation	114

Append	ix B: CFD DATA	115
B.1	CFD Cases Results	115
B.2	Cylinder Case UDF	117
B.3	PMM UDFs	117
Append	ix C: HARDWARE SPECS	120
C.1	T100 Thruster	120
C.2	M100 Thruster	121
C.3	Battery	121
	NImyRIO	
C.5	MTi-30	123
C.6	MSP-300	124
Append	ix D: NON LINEAR SIMULATOR AND LABVIEW CODE	125
D.1	Non-Linear Simulator MATLAB code	125
D.2	Damping estimation	135
D.3	LabVIEW code	137