Optimization of localized colloidal systems for the treatment of periodontal pockets

A Thesis Submitted By

Heba Abdel Moniem Abdel Rahman Gad

Assistant Lecturer at the Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University Master of Pharmaceutical Sciences, 2007, Ain Shams University

For fulfillment of the requirements for degree of philosophy of Pharmaceutical Sciences (Drug Technology)

Under the Supervision of

Prof. Dr. Omaima Ahmed Sammour

Professor and head of department of Pharmaceutics and Industrial
Pharmacy
Faculty of Pharmacy - Ain Shams University

Prof. Dr. Hadir Fouad EL Dessouky

Professor of Periodontology, Oral Medicine and Oral Diagnosis Faculty of Dentistry - Ain Shams University.

Dr. Amany Osama Kamel

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy - Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy
Faculty of Pharmacy
Ain Shams University
Cairo, Egypt
2013

تعظيم أنظمة غروية لعلاج الجيوب الفموية

رسالة مقدمة من

هبه عبد المنعم عبد الرحمن جاد

المدرس المساعد بقسم الصيدلانيات والصيدلة الصناعية - كلية الصيدلة - جامعة عين شمس

ماجستير في العلوم الصيدلية - 2007- جامعة عين شمس

وذلك لاستكمال متطلبات الحصول على درجة الدكتوراه في العلوم الصيدلية (تخصص تكنولوجيا الأدوية)

تحت اشراف

ا.د. أميمة أحمد سمور

استاذ و رئيس قسم الصيدلانيات والصيدلة الصناعية - كلية الصيدلة - جامعة عين شمس

ا.د. هدير فؤاد الدسوقى

استاذ علاج اللثة و طب الفم والتشخيص - كلية طب اسنان - جامعة عين شمس

د. أماني أسامة كامل

استاذ مساعد الصيدلانيات والصيدلة الصناعية - كلية صيدلة - جامعة عين شمس

Acknowledgement

I am deeply thankful to Allah by the grace of whom the present work was realized.

First of all, I would like to express my deepest gratitude and appreciation to **Prof. Dr. Omaima Ahmed Sammour**, Professor and head of department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for suggesting the point, her instructive supervision, continuous advice and supportive encouragement.

I would like to express my deep and sincere gratitude and regards to **Prof. Dr. Hadir Fouad EL Dessouky**, Professor of Periodontology, Oral Medicine and Oral diagnosis, Faculty of Dentistry, Ain Shams University for her great help and valuable comments.

I would like to extend a special thanks to **Dr. Amany Osama Kamal**, Associate professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for planning the work, her instructive discussion, unlimited advice and her great effort devoted towards the completion of this thesis.

I would like to thank **Prof. Dr. Mohamed Mabrouk,** Professor and head of department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for his valuable advice and offering facilities to complete the microbiological part.

I would like to thank **Prof. Dr. Ahmed Abdel Aziz**, Professor of Periodontology, Oral Medicine and Oral diagnosis, Faculty of Dentistry, Ain Shams University for his help in performing the clinical part.

I would like to thank **Dr. Ola Ezzat**, Lecturer of Periodontology, Oral Medicine and Oral diagnosis, Faculty of Dentistry, Ain Shams University for her great help in performing the clinical part.

I would like to thank **Dr. Nancy Magdy**, Lecturer of Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, for her help in constructing the fist derivative spectra.

I would like to thank **Pharmacist Ahmed Abu Zied**, Assistant Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for his great help in performing the microbiological part.

Grateful thanks are extended to my colleagues and all workers in Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University.

I would like to extend a special acknowledgment to **my husband and my sons** (**Ahmed & Amr**) for their encouragement, support, and most of all their patience for which I am truly grateful.

A special debt of gratitude is gladly acknowledged to **my father and brother** for their encouragement and finally, words could never express my deep feelings toward my **beloved mother and my twin,** for their sincere help, support and enduring the difficult times during this work.

Contents

Abbreviations List	i	
List of Tables.	iii	
List of Figures	ix	
Abstract	xiv	
General Introduction	1	
Scope of work		
F	19	
Chapter I		
Preparation and characterization of doxycycline hydrochloride an	ıd	
metronidazole loaded proniosomal gel		
Introduction	20	
Experimental	27	
Methods	21	
I- Determination of λ_{max} of doxycycline hydrochloride and metronidazole in phosphate buffer (pH 7.4)		
II- Construction of calibration curves of doxycycline hydrochloride and	29	
metronidazole	20	
III-Preparation of doxycycline hydrochloride and metronidazole loaded	29	
proniosomes	20	
A- Selection of an appropriate carrier for the preparation of proniosomes	29 29	
B- Preparation of proniosomes	30	
C- Formation of niosomes from proniosomes	30	
D- Study of the influence of various formulation parameters	30	
i- Effect of surfactant structure	30	
ii- Effect of cholesterol content	31	
iii- Effect of surfactant loading	31	
iv- Effect of drug structure and amount	31	
E- Evaluation of the niosomal suspensions	31	
i- Microscopic examination		
1- Optical microscopy	31 31	
2- Transmission electron microscopy (TEM)		
ii- Determination of doxycycline hydrochloride and metronidazole	31	
entrapment efficiencies	22	
iii- Determination of vesicle size, size distribution and zeta potential	32	
iv- <i>In-vitro</i> release study	32	
IV- Physicochemical characterization of proniosomes powder	32	
A- Scanning electron microscopy (SEM)	33	
B- Powder flowability	33	
C- Differential scanning calorimetry (DSC)	33	
D- Fourier transform infrared (FT-IR) spectroscopy	34	
· / 1	34	

V-	Stability studies.
	Incorporation of proniosomes into poloxamer gel
	A- Preparation of poloxamer gel
	B- <i>In-vitro</i> release study.
VII	- Data analysis
	ults and Discussion
	Determination of λ_{max} of doxycycline hydrochloride and metronidazole in
	phosphate buffer (pH 7.4).
	Construction of calibration curves of doxycycline hydrochloride and
	metronidazole applying first order derivative
	Proniosomes
111	A- Selection of an appropriate carrier for the preparation of proniosomes
	B- Formation of niosomes from proniosomes
	i- Microscopic examination
	1
	1 1 2
	1 2
	ii- Determination of doxycycline hydrochloride and metronidazole entrapment efficiencies
	entrapment efficiencies 1- Effect of surfactant structure
	2- Effect of cholesterol content.
	3- Effect of surfactant loading.
	4- Effect of drug structure and amount
	iii- Vesicle size and zeta potential analysis
	1- Effect of surfactant structure.
	2- Effect of cholesterol content
	3- Effect of surfactant loading
	4- Effect of drug amount
	iv- In-vitro release of doxycycline hydrochloride and metronidazole
	from proniosomes derived niosomes
	1- Effect of surfactant structure
	2- Effect of cholesterol content
	3- Effect of surfactant loading.
	4- Effect of drug amount
IV-	Physicochemical characterization of the optimum proniosomes powder
	A- Scanning electron microscopy (SEM)
	B- Powder flowability
	C- Differential scanning calorimetry (DSC)
	D- Fourier transform infrared (FT-IR) spectroscopy
V-	Stability studies
VI-	Incorporation of proniosomes into poloxamer gel
Con	aduaiona

Chapter II

Preparation and characterization of doxycycline hydrochloride and metronidazole loaded solid lipid microparticles gel

Introduction	95
Experimental	101
Methods	
I- Partitioning nature of metronidazole between different lipids and water	103
II- Preparation of doxycycline hydrochloride and metronidazole loaded solid	
lipid microparticles	103
A-Study of the influence of various formulation parameters	103
i- Effect of lipid type	103
ii- Effect of homogenization speed	104
iii- Effect of total drug amount.	104
iv- Effect of varying doxycycline hydrochloride to metronidazole percent	104
v- Effect of surfactant type and concentration	104
vi- Effect of addition of glyceryl monostearate	104
B-Evaluation of solid lipid microparticles	105
i- Microscopic examination	105
1- Optical microscopy	105
2- Transmission electron microscopy (TEM)	105
ii- Determination of doxycycline hydrochloride and metronidazole	
entrapment efficiencies	105
iii- Determination of particle size and zeta potential	105
iv- In-vitro release study	105
III- Freeze drying of solid lipid microparticles dispersions	107
A- Freeze-drying process	107
B- Evaluation of the freeze dried solid lipid microparticles	107
i- Determination of doxycycline hydrochloride and metronidazole	
entrapment efficiencies	107
ii- Determination of particle size and zeta potential	107
iii- <i>In-vitro</i> release study	107
iv- Scanning electron microscopy (SEM)	107
v- Differential scanning calorimetry (DSC)	108
vi- Fourier transform infrared (FT-IR) spectroscopy	108
IV-Stability studies	108
V- Incorporation of solid lipid microparticles into poloxamer gel	108
A- Preparation of poloxamer gel	108
B- <i>In-vitro</i> release study	108
VI- Data analysis	109
Results and Discussion	110
I- Partitioning nature of metronidazole between different lipids and water	110

II- Evaluation of solid lipid microparticles	11
A- Microscopic examination	11
1- Optical microscopy	11
2- Transmission electron microscopy	11
B- Determination of doxycycline hydrochloride and metronidazole	
entrapment efficiencies	11
i- Effect of lipid type	11
ii- Effect of homogenization speed	11
iii- Effect of total drug amount	11
iv- Effect of varying doxycycline hydrochloride to metronidazole percent	11
v- Effect of surfactant type and concentration	11
vi- Effect of addition of glyceryl monostearate	12
C- Particle size and zeta potential analysis	12
i- Effect of lipid type	12
ii- Effect of homogenization speed	12
iii- Effect of total drug amount	12
iv- Effect of varying doxycycline hydrochloride to metronidazole percent	12
v- Effect of surfactant type and concentration	12
vi- Effect of addition of glyceryl monostearate	13
D- <i>In-vitro</i> release of doxycycline hydrochloride and metronidazole from	
solid lipid microparticles.	13
III- Freeze drying of optimized solid lipid microparticles formulae	14
A- Evaluation of the freeze dried solid lipid microparticles	14
i- Entrapment efficiencies of doxycycline hydrochloride and	-
metronidazole	14
ii- Particle size and zeta potential analysis	15
iii- <i>In-vitro</i> release study	15
iv- Scanning electron microscopy (SEM).	15
v- Differential scanning calorimetry (DSC)	15
vi- Fourier transform infrared (FT-IR) spectroscopy	15
IV- Stability studies	16
V- Incorporation of solid lipid microparticles into poloxamer gel	16
Conclusions	16
Conclusions	10
Chapter III	
Clinical and microbiological evaluation of the selected formulae	,
Introduction	16
Subjects & Methods	17
Methods	1/
I- Preparation of the different formulations	17
1 1 toparation of the afficient formations	1 /

A- Preparation of doxycycline hydrochloride and metronidazole loaded proniosomal gel
B- Preparation of doxycycline hydrochloride and metronidazole loaded solid
lipid microparticles gel
C- Preparation of doxycycline hydrochloride and metronidazole loaded
poloxamer gel
II- Histopathological evaluation after application of the selected formulations
III- Clinical study design
A- Subjects
B- Selection criteria.
C- Patients grouping
D- Treatment protocol.
E- Criteria for evaluation
i- Microbiological evaluation
1- Sampling from pockets
2- Determination of bacterial count
ii- Clinical evaluation
1- Plaque index (PI)
2- Gingival index (GI)
3- Papillary bleeding index (PBI)
4- Probing pocket depth (PPD)
5- Clinical attachment level (CAL)
IV- Data analysis
Results and Discussion
I- Histopathological evaluation after application of the selected formulations
II- Clinical study
A- Microbiological evaluation
i- Total anaerobic count
ii- Total aerobic count
B- Clinical evaluation
i- Plaque index (PI)
ii- Gingival index (GI)
iii- Papillary bleeding index (PBI)
iv- Probing pocket depth (PPD)
v- Clinical attachment level (CAL)
Conclusions & Recommendations
Summary
References
Consent form
Arabic summary

Abbreviations List

BOP Bleeding on probing
CAL Clinical attachment level
CFUs Colony forming units

CH Cholesterol

DH Doxycycline hydrochloride

DSC Differential scanning calorimetry

Ep Epikuron **Fig.** Figure

FT-IR Fourier transform infrared GCF Gingival crevicular fluid

GI Gingival index

GMS Glyceryl monostearate

g gram(s)

HLB Hydrophilic lipophilic balanceHPMC Hydroxypropylmethyl cellulose

h. Hourhrs. Hoursmg Milligram

MIC Minimum inhibitory concentration

min Minute
ml Milliliter
mM Millimole
m.p. Melting point
MT Metronidazole
mV Millivolt

Mwt Molecular weight

 My52
 Myrj 52

 My59
 Myrj 59

 nm
 Nanometer

PBI Papillary bleeding index
PCL Poly ε-caprolactone
PDI Polydispersity index
PPD Probing pocket depth

PI Plaque index PLA Polylactide

PLGA PolyLactide co glycolide

P188 Poloxamer 188 **P407** Poloxamer 407

rpm Revolution per minute

SA Stearic acid

SD Standard deviation

SE Standard error

Sec Second

SEM Scanning electron microscope
SLMs Solid lipid microparticles
SLNs Solid lipid nanoparticles

Sp Span

SRP Scaling and root planning

SRP+G Scaling and root planning + Poloxamer Gel SRP+P Scaling and root planning + Proniosomes gel

SRP+S Scaling and root planning + Solid lipid microparticles gel

Tc Transition temperatures

TEM Transmission electron microscope

TP Tripalmitin
TS Tristearin
Tw80 Tween 80
μg Microgram
μm Micrometer
U.V. Ultraviolet

 λ_{max} Lambda maximum

List of Tables

Tal	ble No.	Page
1	Relationship between doxycycline hydrochloride and metronidazole concentrations and their absorbance at 263nm and 350nm respectively applying U.V. 1 st order	
	derivative	38
2	Effect of surfactant type on the entrapment efficiencies of doxycycline hydrochloride and metronidazole into proniosomes derived niosomes (1mM	
	lipid/gram carrier without cholesterol, 20mg of each drug)	45
3	Effect of cholesterol content on the entrapment efficiencies of doxycycline	
	hydrochloride and metronidazole into proniosomes derived niosomes (1mM	
	lipid/gram carrier, 20mg of each drug)	48
4	Effect of surfactant loading on the entrapment efficiencies of doxycycline	
	hydrochloride and metronidazole into proniosomes derived niosomes (Sp 60:CH	
	(9:1), 20mg of each drug)	50
5	Effect of drug amount on the entrapment efficiencies of doxycycline hydrochloride	
	and metronidazole into proniosomes derived niosomes (Sp 60:CH (9:1))	54
6	Effect of proniosomes derived niosomes composition on vesicle size and zeta	
	potential	57
7	Effect of surfactant loading on vesicle size and zeta potential of proniosomes	
	derived niosomes (Sp 60:CH (9:1))	58
8	Effect of surfactant type on the <i>in-vitro</i> release of doxycycline hydrochloride from	
	proniosomes derived niosomes in phosphate buffer pH (7.4)	61
9	Effect of surfactant type on the <i>in-vitro</i> release of metronidazole from proniosomes	
	derived niosomes in phosphate buffer pH (7.4)	61
10	Effect of cholesterol content on the <i>in-vitro</i> release of doxycycline hydrochloride	
	from Sp 40 proniosomes derived niosomes in phosphate buffer pH (7.4)	65
11	Effect of cholesterol content on the <i>in-vitro</i> release of metronidazole from Sp 40	
	proniosomes derived niosomes in phosphate buffer pH (7.4)	65
12	Effect of cholesterol content on the <i>in-vitro</i> release of doxycycline hydrochloride	
	from Sp 60 proniosomes derived niosomes in phosphate buffer pH (7.4)	67
13	Effect of cholesterol content on the <i>in-vitro</i> release of metronidazole from Sp 60	
	proniosomes derived niosomes in phosphate buffer pH (7.4)	67

<u>Tal</u>	ble No.	Page
14	Effect of surfactant loading on the in-vitro release of doxycycline hydrochloride	
	from proniosomes derived niosomes in phosphate buffer pH (7.4)	70
15	Effect of surfactant loading on the in-vitro release of metronidazole from	
	proniosomes derived niosomes in phosphate buffer pH (7.4)	70
16	Effect of drug amount on doxycycline hydrochloride and metronidazole in-vitro	
	release from proniosomes derived niosomes in phosphate buffer pH (7.4)	72
17	Kinetic data of doxycycline hydrochloride release from proniosomes derived	
	niosomes prepared from different spans and cholesterol ratios in phosphate buffer	
	(pH 7.4)	75
18	Kinetic data of doxycycline hydrochloride release from proniosomes derived	
	niosomes prepared from different surfactant loadings per gram carrier in phosphate	
	buffer (pH 7.4)	75
19	Kinetic data of doxycycline hydrochloride release from proniosomes derived	
	niosomes prepared from different drug amounts in phosphate buffer (pH 7.4)	76
20	Kinetic data of metronidazole release from proniosomes derived niosomes	
	prepared from different spans and cholesterol ratios in phosphate buffer (pH 7.4)	76
21	Kinetic data of metronidazole release from proniosomes derived niosomes	
	prepared from different surfactant loadings per gram carrier in phosphate buffer	
	(pH 7.4)	77
22	Kinetic data of metronidazole release from proniosomes derived niosomes	
	prepared from different drug amounts in phosphate buffer (pH 7.4)	77
23	Angle of repose of proniosomes prepared using different surfactant loadings	82
24	Effect of storage temperatures on the entrapment efficiencies of doxycycline	
	hydrochloride and metronidazole into proniosomes (Sp 60:CH, 9:1)	88
25	In-vitro release of doxycycline hydrochloride and metronidazole from proniosomes	
	in poloxamer gel in comparison to proniosomes derived niosomes in phosphate	
	buffer (7.4)	89
26	Kinetic data of doxycycline hydrochloride and metronidazole release from	
	proniosomes in poloxamer gel in phosphate buffer (pH 7.4)	91
27	Partition coefficient of metronidazole in different lipids.	110

Ta	ble No.	Page
28	Effect of lipid type on the entrapment efficiencies of doxycycline hydrochloride	
	and metronidazole into solid lipid microparticles (2.5% w/w poloxamer 188 :	
	Epikuron (1:1) surfactants and 2.5% w/w of each drug at 8000 rpm for 3 minutes)	114
29	Effect of homogenization speed on the entrapment efficiencies of doxycycline	
	hydrochloride and metronidazole into solid lipid microparticles (5% w/w tripalmitin	
	or tristearin lipid matrix, 2.5% w/w poloxamer 188 : Epikuron (1:1) surfactants and	
	2.5% w/w of each drug)	115
30	Effect of total drug amount on the entrapment efficiencies of doxycycline	
	hydrochloride and metronidazole into solid lipid microparticles (5% w/w tripalmitin	
	lipid matrix, 2.5% w/w poloxamer 188 : Epikuron (1:1) surfactants at 4000 rpm for	
	3 minutes)	116
31	Effect of varying doxycycline hydrochloride to metronidazole percent on the	
	entrapment efficiencies of doxycycline hydrochloride and metronidazole into solid	
	lipid microparticles (5% w/w tripalmitin lipid matrix, 2.5% w/w poloxamer 188 :	
	Epikuron (1:1) surfactants at 4000 rpm for 3 minutes)	118
32	Effect of surfactant type and concentration on the entrapment efficiencies of	
	doxycycline hydrochloride and metronidazole into solid lipid microparticles	
	(5% w/w tripalmitin lipid matrix, 25mg DH, 100mg MT at 4000 rpm for 3	
	minutes)	121
33	Effect of addition of glyceryl monostearate on the entrapment efficiencies of	
	doxycycline hydrochloride and metronidazole into solid lipid microparticles	
	(2.5% w/w poloxamer 188 : Epikuron (1:1) surfactants, 25mg DH, 100mg MT at	
	4000 rpm for 3 minutes)	123
34	Effect of lipid type on the size of and zeta potential of solid lipid microparticles	
	(2.5% w/w poloxamer 188 : Epikuron (1:1) surfactants, 2.5% w/w of each drug at	
	8000 rpm for 3 minutes)	125
35	Effect of homogenization speed on the size and zeta potential of solid lipid	
	microparticles (5%w/w tripalmitin or tristearin lipid matrix, 2.5%w/w poloxamer	
	188 and Epikuron (1:1) surfactants and 2.5% w/w of each drug)	126

Tal	ble No.	Page
36	Effect of total drug amount on the size and zeta potential of solid lipid	
	microparticles (5% w/w tripalmitin lipid matrix and 2.5% w/w poloxamer 188 and	
	Epikuron (1:1) surfactants at 4000 rpm for 3 minutes)	126
37	Effect of varying doxycycline hydrochloride to metronidazole percent on the size	
	and zeta potential of solid lipid microparticles (5% w/w tripalmitin lipid matrix and	
	2.5% w/w poloxamer 188 and Epikuron (1:1) surfactants at 4000 rpm for 3	
	minutes)	127
38	Effect of surfactant type and concentration on the size and zeta potential of solid	
	lipid microparticles (5% w/w tripalmitin lipid matrix, 25mg DH, 100mg MT at	
	4000 rpm for 3 minutes)	130
39	Effect of addition of glyceryl monostearate on the size and zeta potential of solid	
	lipid microparticles (2.5% w/w poloxamer 188 : Epikuron (1:1) surfactants, 25mg	
	DH, 100mg MT at 4000 rpm for 3 minutes)	132
40	The composition of selected solid lipid microparticles subjected to <i>in-vitro</i> release	
	study	133
41	In-vitro release of doxycycline hydrochloride from solid lipid microparticles	
	stabilized using 2.5% w/w surfactant(s) in phosphate buffer pH (7.4)	135
42	<i>In-vitro</i> release of metronidazole from solid lipid microparticles stabilized using	
	2.5% w/w surfactant(s) in phosphate buffer pH (7.4)	135
43	<i>In-vitro</i> release of doxycycline hydrochloride from solid lipid microparticles	
	stabilized using 5%w/w surfactant(s) in phosphate buffer pH (7.4)	
44	<i>In-vitro</i> release of metronidazole from solid lipid microparticles stabilized using	
	5% w/w surfactant(s) in phosphate buffer pH (7.4)	138
45	Effect of using different ratios of tripalmitin to glyceryl monostearate on the <i>in</i> -	
	vitro release of doxycycline hydrochloride from solid lipid microparticles	
	stabilized using 2.5% w/w poloxamer and Epikuron (1:1) in phosphate buffer pH	
	(7.4)	141
46	Effect of using different ratios of tripalmitin to glyceryl monostearate on the <i>in</i> -	
	vitro release of metronidazole from solid lipid microparticles stabilized using	
	2.5% w/w poloxamer and Epikuron (1:1) in phosphate buffer pH (7.4)	141