Applications of Gene Therapy in Retinal Disorders

An essay

Submitted for partial fulfillment Of master degree in ophthalmology

Presented by

Rabab Alaraby Ali Soliman.

M.B., B.Ch.

Faculty of medicine Ain Shams University

Supervised by

Prof. Dr. Hassan Ezzeldin Alsamaa.

Professor of ophthalmology Faculty of medicine Ain Shams University

Dr. Tamer Fahmy Eliwa.

Lecturer of ophthalmology Faculty of medicine Ain Shams University

> Faculty of medicine Ain Shams University Cairo - 2014

Applications of Gene Therapy in Retinal Disorders

An essay
Submitted for partial
fulfillment
Of master degree in
ophthalmology

Ain Shams University **2014**

ACKNOWLEDGEMENT

Praise to Allah, who gave me everything, keep me guided and who allowed this work to be done.

It's indeed an honor for me to be supervised by Prof. Hassan Ezzaldin Alsamaa professor of ophthalmology in faculty of medicine, Ain Shams University, who gave me encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. He helped me in doing a lot of research and I came to know about so many new things.

I am also heartily thankful to my supervisor, Dr. Tamer Fahmy Eliwa lecturer of ophthalmology in faculty of medicine, Ain Shams University. He gave me moral support and guided me in different matters regarding the topic. He had been very kind and patient while suggesting me the outlines of this work and correcting my doubts.

I thank them for their overall supports and without them this work could not have come to reality.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Rabab Alaraby Ali

AIM OF THE WORK

To review current literature and research in the field of gene therapy in treating acquired and inherited retinal disorders and its future prospects and applications.

list of CONTENTS

Topic	Pages	
	Acknowledgment	II
	List of contents	III
	List of figures	IV
	List of tables	V
	List of abbreviations	VI-VIII
	Introduction	1-3
	Aim of the work	4

	PART 1: INTRODUCTION		
1	GENE THERAPY BASICS	5-17	

PART 2: GENE THERAPY APPLICATION IN			
RETINAL DISORDERS			
2	GENE THERAPY IN LEBER'S CONGENITAL AMAUROSIS	18-32	
3	GENE THERAPY IN AGE RELATED MACULAR DEGENERATION	33-47	
4	GENE THERAPY IN RETINOBLASTOMA	48-59	
5	GENE THERAPY IN OTHER RETINAL DISORDERS: • RETINITIS PIGMENTOSA. • USHER DISEASE • STARGRDT DISEASE	60-75	

PART 3: REFERENCES & SUMMARIES SUMMARY 76-77 REFRENCES 78-89

list of FIGURES

Fig. No.	Description	Page
1	Flow chart shows gene therapy	6
2	Viral method of gene therapy	9
3	Life cycle of the AAV vector.	14
4	Intraocular and periocular injection routes. Schematic representation	17
5	Various retinal phenotypes among LCA patients	19
6	Retinal Appearance and Morphologic Features before and after Surgery in the Three Patients	26
7	Retinal Appearance and Morphologic Features before and after Surgery in the Three Patients	27
8	Retinal structure measured by optical coherence tomography before and after surgery	28
9	Progression of signs of age-related macular degeneration over time	35
10	Flourescein angiogram and OCT for classic CNV	37
11	Flourescein angiogram and OCT for occult CNV	37
12	Flourescein angiogram and OCT for occult CNV and RAP	37
13	Fluorescein angiogram of a patient at baseline (BL) and 3 months after an intravitreous injection	44
14	Fluorescein angiogram of a patient at baseline (BL) and 3 months after an intravitreous injection AdPEDF.11	45
15	Ocular fundus aspect of retinoblastoma, Ultrasound of retinoblastoma, MRI pattern of retinoblastoma with optic nerve involvement, Aspect of trilateral retinoblastoma (MRI).	51
16	Representative retinal fundoscopic photographs before and after gene therapy in retinoblastoma.	58
17	Histopathology of eyes from 2 retinoblastoma patients	59
18	Photographs of a normal and RP retina	63
19	Normal vision and Stargrdt's patient late stage.	72
20	Fundus photo of a patient diagnosed with STGD	73

list of ABBREVIATIONS

Abb.	Full term
AAV	Adeno-associated viral vector
AAV2-hRPE	Adeno-associated viral vector of human Retinal
65 V2	pigment epithelium specific 65-KD protein
AAV2-	Adeno-associated viral vector of protein
sFLT01	VEGF/PlGF (placental growth factor) binding
	domain of human VEGFR1/Flt-1 (hVEGFR1) fused
	to the Fc portion of human IgG(1)
AAV vector-	Adeno-associated viral vector of human pigment
PEDF	epithelium derived factor
ABCA4	ATP-binding cassette, sub-family A (ABC1),
	member 4 gene.
Ad	Adenovirus
ADA	Adenosine deaminase deficiency
Ad PEDF.	Adenovirus vector for pigment epithelium drived
	factor
AdV-TK	Adenoviral mediated delivery of herpes simplex
AIDI 1 gana	thymidine kinase
AIPL1 gene	Aryl hydrocarbon receptor interacting protein-like 1 gene.
AMD	Age related macular degeneration
AREDS	Age-Related Eye Disease Study
ARMS2 gene	Age-related maculopathy susceptibility protein 2
Altii32 gene	encoding gene.
bHLH	Basic helix-loop domain
CEP290gene	Centrosomal protein 290kDa encoding gene
CFB gene	Complement factor B gene
CFH gene	Complement factor H gene
CFI gene	Complement factor I gene
CNGB3 gene	Cyclic nucleotide gated channel beta 3 gene
CR Ad	Conditionally replicating adenovirus
CRB1 gene	Crumbs homolog 1 encoding gene
CRX gene	Cone-rod homeobox encoding gene
DNA	Deoxyribonucleic acid
EIAV	Equine infectious anemia virus
ELOVL4	Elongation of very long chain fatty acids protein 4

Abb.	Full term		
FAF	Fundus autofluorescence		
GUCY2D	Guanylate cyclase 2D, membrane retinal enzyme		
	gene		
GPR98	G protein-coupled receptor 98 protein gene		
HIV 1	Human immunodeficiency virus type 1		
HDL	High density lipoprotien		
HPV	Human papilloma virus		
h TERT	Human telomerase reverse transcriptase		
I-Crel gene	Clamydomonas reinhardtii homing endonucleases gene		
IQCB1	IQ calmodulin-binding motif-containing protein 1		
ITR	Inversed terminal repeat		
LCA	Leber congenital amaurosis		
LRAT	Lecithin retinol acyltransferase enzyme		
MRI	Magnetic resonance imaging		
MERTK	Proto-oncogene tyrosine-protein kinase MER		
	enzyme encoding gene		
MYo7A	Myosin VIIA protein encoding gene		
MYCN	N-myc proto-oncogene protein encoding gene		
NMNAT1	Nicotinamide mononucleotide adenylyltransferase		
	1 enzyme encoding gene		
PEDF	Pigment epithelium drived factor		
PPRPE	Preserved para arteriolar retinal pigment		
	epthelium		
PR	Phoptoreceptors		
PROM1	Prominin 1 glycoprotein encoding gene		
RDS			
RSC	Royal college of surgeons rats		
rAAV	Recombinant adeno-associated virus		
RB1	Retinoblastoma protein tumor suppressor		
RDH12	Retinol dehydrogenase 12 enzyme gene		
ROP	Retinopathy of prematurity		
RPE	Retinal pigment epithelium		
SPATA7	Spermatogenesis-associated protein 7		

Abb.	Full term			
STGD	Stargrdt's disease			
SPATA7	Spermatogenesis-associated protein 7			
STGD	Stargrdt's disease			
TAL	(transcription activator-like) effectors			
TULP1	Tubby-related protein 1 encoding gene			
TK	Tumor killer			
USH2A	Usher syndrome 2A protein encoding gene			
VEGF	Vascular endothelial growth factor			
VSV-G	Glycoprotein of vesicular stomatitis virus.			

List of TABLES

Table no.	Description	Page
1	Characteristics of viral vectors used in human retinal gene therapy clinical trials.	16
2	Some of Genes Associated with RP	71
3	Usher syndrome genes and proteins	78

Introduction.

INTRODUCTION.

As gene therapy begins to produce its first clinical successes, interest in ocular gene transfer has grown owing to the favorable safety and efficacy characteristics of the eye as a target organ for drug delivery. Important advances also include the availability of viral and non-viral vectors that are able to efficiently transduce various ocular cell types, the use of intraocular delivery routes and the development of transcriptional regulatory elements that allow sustained levels of gene transfer in small and large animal models after a single administration. The design of improved viral vectors and therapeutic gene expression cassettes has enabled long-lasting therapeutic efficacy tailored to the appropriate disease and cellular target. (Colella et al., 2009;Liu et al., 2011).

The first experiments in humans with severe inherited forms of blindness seem to confirm the good safety and efficacy profiles observed in animal models and suggest that gene transfer has the potential to become a valuable therapeutic strategy for otherwise untreatable blinding diseases. (Colella et al., 2009).

The preliminary positive results obtained in the recent clinical trials for Leber's congenital amaurosis show the potential of gene transfer for the treatment of ocular diseases. Higher doses of vector, younger treatment ages and appropriate clinical read-outs will be instrumental in defining the therapeutic potential of this approach for LCA caused by RPE65 mutations. trials (Bainbridge et al., 2008; Hauswirth et al., 2008; Maguire et al., 2008).

More importantly, the promising safety and efficacy results observed in these first attempts in humans encourage the application of a similar strategy to other blinding diseases. The possibility of packaging the large ABCA4 gene in an adeno-associated viral (AAV) vector (Allocca, M. et al. 2008) or an lentivirus (LV) and the efficacy observed after their delivery in animal models (Kong et al. 2008) are important steps towards developing human clinical trials for the common Stargrdt disease or for the other retinal degenerations associated with ABCA4 mutations (Molday, 2007).

Regarding wet type of age-related macular degeneration, which is a leading cause of blindness amongst the elderly, clinical trials of gene therapy showed a decrease in the size and prominence of CNV lesions in the high-dose treatment group. Such treatments are promising because the genes delivered could provide protection in the long-term without the need for repeated injections (*Campochiaro et al 2006*).

Retinoblastoma, which is the most common primary retinal malignancy in childhood, has many treatment modalities available, but finding a safer and more efficient one remains a major challenge. In clinical trials of gene therapy, Tumor regression was observed at higher doses of treatment, though all ultimately required enucleation, indicating that suicide gene therapy should not be used alone but might be considered as an adjuvant to standard therapies. *(Chévez-Barrios et al, 2005)*.

Although there is currently no cure for retinitis pigmentosa (RP), well-characterised animal models and a developed understanding of the genetic basis of the disease allow gene therapy to be a potentially viable therapeutic strategy for severe retinitis pigmentosa (i.e. receptor tyrosine

kinase Mertk deficiency) (Smith, A.J. et al. 2003 ;Tschernutter,et al. 2005).

For several of these diseases, gene transfer of neurotrophic molecules can be considered a strategy to slow or halt the progression of degeneration of photoreceptors (*Buch*, *et al.* 2006) or retinal ganglion cells alone or in combination with gene-replacement or gene-silencing approaches (*Liu et al.*, 2011).