MICROBIOLOGICAL STUDIES ON CERTAIN ANTIHISTAMINIC-ANTIBIOTICS COMBINATIONS

A Thesis
Presented to
Faculty of Pharmacy, Alexandria University
In Partial fulfillment of the
Requirements for the degree
Of

Master of Pharmaceutical Sciences

In

MICROBIOLOGY

Ву

Omar Mohamed El-Halfawy

B. Pharm. Sci. 2005 Faculty of Pharmacy, Alexandria University

> Faculty of Pharmacy Alexandria University 2008

Advisors' Committee:

Prof. Dr. Mostafa A. El-Nakeeb

Professor of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alexandria

Prof. Dr. Hamida M. Abou Shleib

Professor and Head of Pharmaceutical Microbiology Department, Faculty of Pharmacy, University of Alexandria

Assist. Prof. Dr. Amal M. Khalil

Assistant Professor of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alexandria

Assist. Prof. Dr. Hoda G. Omar

Assistant Professor of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alexandria

> Microbiology Department Faculty of Pharmacy University of Alexandria 2008

MICROBIOLOGICAL STUDIES ON CERTAIN ANTIHISTAMINICS-ANTIBIOTICS COMBINATIONS

A Thesis
Presented to
Faculty of Pharmacy, Alexandria University
In Partial fulfillment of the
Requirements for the degree

Master of Pharmaceutical Sciences

ln

MICROBIOLOGY

Ву

Omar Mohamed El-Halfawy

B. Pharm. Sci. 2005 Faculty of Pharmacy, Alexandria University

Examiners' Committee

Approved

Prof. Dr. Mostafa A. El-Nakeeb

Professor of Pharmaceutical Microbiology

Faculty of Pharmacy

Alexandria University

Prof. Dr. Mohamed A. Fawzy

Professor of Pharmaceutical Microbiology

Faculty of Pharmacy

Alexandria University

Prof. Dr. Hamida M. Abou Shleib

Professor and Head of Pharmaceutical Microbiology Department

Faculty of Pharmacy

Alexandria University

Prof. Dr. Ebtesam El-Ghazawy

Professor of Pharmaceutical Microbiology

Institute of Medical Research

Alexandria University

TABLE OF CONTENTS

	Page
- LIST OF ABBREVIATIONS	i
- LIST OF TABLES	iii
- LIST OF FIGURES	V
I. INTRODUCTION	1
II. AIM OF THE WORK	18
III. MATERIALS & METHODS	19
IV. RESULTS	40
V. DISCUSSION	202
VI. SUMMARY & CONCLUSIONS	214
VII. REFERENCES	218

DEDICATION

To My Family...

My Father, Mother

And

Brother

My Wife Somiraa

And

My Daughter Nada

ACKNOWLEDGEMENTS

First and foremost I praise and thank God for giving me the capability, patience and will to accomplish this work.

I would like to record my sincerest gratitude to my supervisor, **Prof. Dr. Mostafa El-Nakeeb**, who has supported me throughout my thesis with his patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my Masters degree to his encouragement and effort. His truly scientist intuition exceptionally inspired and enriched the work. One simply could not wish for a better supervisor.

I gratefully acknowledge **Prof. Dr. Hamida Abou-Shleib** for her advice, supervision, and crucial support. I am thankful that in the midst of all her activity, she revised the thesis with great devotion. And I have genuinely benefited from her constructive comments.

Many thanks go in particular to **Assist. Prof. Dr. Amal Khalil** for her sincere encouragement and support. I am indebted to her for granting me her time for reading this thesis carefully and giving me critical comments about it.

I would like to pay tribute to **Assist. Prof. Dr. Hoda Omar** for her unflinching support and profound cooperation. I fully benefited from her indispensable contribution in critical reading and revising the thesis.

I wish to express my gratitude to the staff members, secretarial staff, technicians and workers of the Microbiology Department, Faculty of Pharmacy, Alexandria University. My deepest appreciation goes to **Prof. Dr. Mohamed Anwar**Fawzy. I am indebted to him more than he knows.

In my daily work I have been blessed with friendly and cheerful colleagues who have always been there providing me help and support. I deeply thank **Assist. Lect. Mohamed Mehanna**, Industrial Pharmacy Department, for his generous collaboration.

I cannot end without thanking my beloved family for constant encouragement, understanding and endless love throughout the duration of my studies.

LIST OF TABLES

Table		Page Number
1	Clinical isolates and standard organisms: Code and source	41
2	Microscopical characteristics of test organisms	42
3a	Biochemical differential tests for Gram-positive test organisms	42
3b	Differential tests for Gram-negative test organisms	43
4a	Antibiotic resistance pattern of Gram positive organisms	43
4b	Antibiotic resistance pattern of Gram negative organisms	44
5a	MIC by broth macrodilution technique of some antihistaminics against clinical isolates and standard organisms	46
5b	MIC by agar dilution technique of antihistaminics against clinical isolates and standard organisms	47
6a	MBC by broth macrodilution technique of some antihistaminics against clinical isolates and standard organisms	49
6b	MBC by agar dilution technique of antihistaminics against clinical isolates and standard organisms	51
7	Leakage of UV-absorbing materials at 260 & 280 nm from test organisms' cells after treatment with 200 $\mu g/ml$ of aze, cet, dip and cyp for 24 hr at 37°C in 0.9% saline	92
8a	Effect of antihistaminics on the bacteriostatic activity of Ampicillin against different organisms using agar dilution technique	103
8b	Effect of antihistaminics on the bacteriostatic activity of Cephradine against different organisms using agar dilution technique	103
8c	Effect of antihistaminics on the bacteriostatic activity of Cefotaxime against different organisms using agar dilution technique	105

8d	Effect of antihistaminics on the bacteriostatic activity of Cefepime against different organisms using agar dilution technique	106
8e	Effect of antihistaminics on the bacteriostatic activity of Ciprofloxacin against different organisms using agar dilution technique	109
8f	Effect of antihistaminics on the bacteriostatic activity of Erythromycin against different organisms using agar dilution technique	109
8g	Effect of antihistaminics on the bacteriostatic activity of Gentamicin against different organisms using agar dilution technique	110
8h	Effect of antihistaminics on the bacteriostatic activity of Doxycycline against different organisms using agar dilution technique	111
9	MIC by agar dilution technique of some antibiotics against several clinical isolates and standard organisms	112

LIST OF FIGURES

Figure	LIST OF FIGURES	Page Number
1a	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>S. aureus</i> isolate Sa ₁₀₃ in 0.9% saline by viable count technique at 37°C.	53
16	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>S. aureus</i> isolate Sa ₁₀₄ in 0.9% saline by viable count technique at 37°C.	54
1c	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>S. epidermidis</i> isolate Se ₁₀₁ in 0.9% saline by viable count technique at 37°C.	56
1d	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>E. faecium</i> isolate Ef ₁₀₁ in 0.9% saline by viable count technique at 37°C.	57
1e	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>E. coli</i> isolate Ec ₁₀₃ in 0.9% saline by viable count technique at 37°C.	58
1f	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>E. coli</i> isolate Ec ₁₀₅ in 0.9% saline by viable count technique at 37°C.	60
1g	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>Kl. pneumoniae</i> isolate Kl ₁₀₂ in 0.9% saline by viable count technique at 37°C.	61
1h	Antibacterial effect of Dip, Cet & Dox (A), Fex, Cyp & Mec (B) and Lor, Aze & Meq (C) against <i>Ps. aeruginosa</i> isolate Ps ₁₀₂ in 0.9% saline by viable count technique at 37°C.	62
2	Effect of Aze (A), Cet (B), Dip (C), Cyp (D) & Mec (E) concentrations on the growth of 5 clinical isolates at 6 hours using the viable count technique.	66-68
3	Dynamics of the antibacterial activity of Aze 50 and 100 μ g/ml against <i>S. aureus</i> Sa ₁₀₃ (A), <i>S. aureus</i> Sa ₁₀₄ (B), <i>E. faecium</i> Ef ₁₀₁ (C) <i>E. coli</i> Ec ₁₀₃ (D) & <i>Ps. aeruginosa</i> Ps ₁₀₂ (E) isolates at 37°C	71-72
4	Dynamics of the antibacterial activity of Cet 100 and 200 μ g/ml against <i>S. aureus</i> Sa ₁₀₃ (A), <i>E. coli</i> Ec ₁₀₃ (B) isolates at 37°C.	74

5	Dynamics of the antibacterial activity of Dip 100 and 200 μ g/ml against <i>S. aureus</i> Sa ₁₀₁ (A), <i>E. coli</i> Ec ₁₀₅ (B) isolates at 37°C	75
6	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Aze 50 & 100 µg/ml against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37° C	77
7	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Aze 50 & 100 µg/ml against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37° C	78
8	Effect of inoculum size (10^3 CFU/ml) on the dynamics of antibacterial activity of Cet 100 µg/mL against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37° C	80
9	Effect of inoculum size (10^3 CFU/ml) on the dynamics of antibacterial activity of Cet $100 \mu g/mL$ against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37° C	80
10	Effect of pH on the antibacterial activity of Aze 100 µg/ml against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at A: 3 hr, B: 6hr & C: 24 hr	81
11	Effect of pH on the of antibacterial activity of Aze 100 µg/ml against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at A: 3 hr, B: 6hr & C: 24 hr	82
12	Effect of pH on the antibacterial activity of Cet 100 μ g/ml against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C at 24 hr.	83
13	Effect of pH on the antibacterial activity of Cet 100 μ g/ml against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 24 hr.	83
14	Effect of 48 hr pretreatment with 100μg/ml Aze & Cet on the antibacterial action of 100μg/ml Aze & Cet against <i>S. aureus</i> Sa ₁₀₃ (A) & <i>E. coli</i> Ec ₁₀₃ (B) isolates determined by viable count technique at 24 hr at 37°C	85
15	Effect of 30 days pretreatment with 50μg/ml Aze & Cet on the antibacterial action of 100μg/ml Aze & Cet against <i>S. aureus</i> Sa ₁₀₃ (A) & <i>E. coli</i> Ec ₁₀₃ (B) isolates determined by viable count technique at 24 hr at 37°C	86

16	Determination of the PAE of Aze & Cet against <i>S. aureus</i> Sa ₁₀₃ turbidimetrically at 37°C	88
17	Determination of the PAE of Aze & Cet against <i>E. coli</i> Ec_{103} turbidimetrically at $37^{\circ}C$	89
18	Leakage of UV-absorbing materials at 260 & 280 nm after treatment with 200 μ g/ml of aze, cet, dip and cyp for 24 hr at 37°C in 0.9% saline from A) <i>S. aureus</i> Sa ₁₀₃ , B) <i>E. faecium</i> Ef ₁₀₁ , C) <i>E. coli</i> Ec ₁₀₃ & D) <i>Ps. aeruginosa</i> Ps ₁₀₂ isolates	93-94
19	Effect of 200 μ g/ml Aze & Dip (A) and Cet & Cyp (B) on the permeability of artificial cytoplasmic membrane model (MB-loaded negatively charged cholesterol-free unilamellar liposomes) determined by measuring the absorbance of the leaked MB.	96
20	Morphology of liposomes examined under oil-immersion objective lens. A: untreated control, B: cetirizine-treated & C: azelastine-treated.	98-99
21	Ultrastructure of <i>S. aureus</i> Sa ₁₀₃ cells. A: control, B: cetirizine-treated cells & C: azelastine-treated cells.	100-101
22	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>S. aureus</i> isolate Sa ₁₀₃ in 0.9% saline by viable count technique at 37°C.	115-117
23	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>S. aureus</i> isolate Sa ₁₀₄ in 0.9% saline by viable count technique at 37°C.	119-121
24	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>S. epidermidis</i> isolate Se ₁₀₁ in 0.9% saline by viable count technique at 37°C.	123-125
25	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>E. faecium</i> isolate Ef ₁₀₁ in 0.9% saline by viable count technique at 37°C.	127-129

26	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>E.coli</i> isolate Ec ₁₀₃ in 0.9% saline by viable count technique at 37°C.	131-133
27	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>E.coli</i> isolate Ec ₁₀₅ in 0.9% saline by viable count technique at 37°C.	134-136
28	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>Kl. pneumoniae</i> isolate Kl ₁₀₂ in 0.9% saline by viable count technique at 37°C.	139-141
29	Effect of Dip (A), Dox (B), Cet (C), Mec (D), Fex (E), Lor (F), Cyp (G), Aze (H) & Meq (I) on the antibacterial activity of antibiotics(1/2 MIC) against <i>Ps. aeruginosa</i> isolate Ps ₁₀₂ in 0.9% saline by viable count technique at 37°C.	142-144
30	Effect of Aze 50 and 100 μ g/ml on the dynamics of the antibacterial activity of 1/2 MIC of Ampicillin against A) <i>S. aureus</i> Sa ₁₀₃ , B) <i>S. aureus</i> Sa ₁₀₄ , C) <i>E. faecium</i> Ef ₁₀₁ , D) <i>Ps. aeruginosa</i> Ps ₁₀₂ & E) <i>E. coli</i> Ec ₁₀₃ isolates at 37°C	146-148
31	Effect of Aze 50 and 100 μ g/ml on the dynamics of the antibacterial activity of Gen: 1/2 MIC (A) & 2 MIC (B) against Sa ₁₀₃ , 1/2 MIC (C) & 2 MIC (D) against Sa ₁₀₄ , 1/2 MIC (E) & 2 MIC (F) against Ef ₁₀₁ , 1/2 MIC (G) & 2 MIC (H) against Ec ₁₀₃ , 1/2 MIC (I) & 2 MIC (J) against Ps ₁₀₂ at 37°C	150-154
32	Effect of Cet 100 μ g/ml on the dynamics of the antibacterial activity of 1/2 MIC of Ampicillin against A) <i>S. aureus</i> Sa ₁₀₃ , B) <i>E. coli</i> Ec ₁₀₃ isolates at 37°C	156
33	Effect of Cet 100 and 200 μ g/ml on the dynamics of the antibacterial activity of Gen: 1/2 MIC (A) & 2 MIC (B) against Sa ₁₀₃ 1/2 MIC, (C) & 2 MIC (D) against Ec ₁₀₃ isolates at 37°C	157-158
34	Effect of Cet 100 and 200 μ g/ml on the dynamics of the antibacterial activity of Ery: 1/2 MIC (A) & 2 MIC (B) against Sa ₁₀₃ 1/2 MIC, (C) & 2 MIC (D) against Ec ₁₀₃ isolates at 37°C	160-161

35	Effect of Dip 100 and 200 μ g/ml on the dynamics of the antibacterial activity of 1/2 MIC of Ampicillin against A) <i>S. aureus</i> Sa ₁₀₁ , B) <i>E. coli</i> Ec ₁₀₅ isolates at 37°C	162
36	Effect of Dip 100 and 200 μ g/ml on the dynamics of the antibacterial activity of 1/2 MIC of Gentamicin against A) <i>S. aureus</i> Sa ₁₀₁ , B) <i>E. coli</i> Ec ₁₀₅ isolates at 37°C	163
37	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Aze 50 & 100 µg/ml, 1/2 MIC Amp & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37° C	165
38	Effect of inoculum size (A: 10 ³ , B:10 ⁵ & C: 10 ⁷ CFU/ml) on the dynamics of antibacterial activity of Aze 50 & 100 μg/ml, 1/2 MIC Amp & their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C	166
39	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Aze $100 \mu g/ml$, $1/2$ MIC Gen & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37° C	167
40	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Aze $100 \mu g/ml$, $1/2$ MIC Gen & their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37° C	168
41	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Cet 100 µg/ml, $1/2$ MIC Amp & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37° C	170
42	Effect of inoculum size (A: 10^3 , B: 10^5 & C: 10^7 CFU/ml) on the dynamics of antibacterial activity of Cet $100 \mu g/ml$, $1/2$ MIC Amp & their combination against <i>E.coli</i> Ec ₁₀₃ isolate by viable count technique at 37° C	171
43	Effect of inoculum size (A: 10³, B:10⁵ & C: 10⁻ CFU/ml) on the dynamics of antibacterial activity of Cet 100 μg/ml, 1/2 MIC Gen & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C	172
44	Effect of inoculum size (A: 10 ³ , B:10 ⁵ & C: 10 ⁷ CFU/ml) on the dynamics of antibacterial activity of Cet 100 μg/ml, 1/2 MIC Gen & their combination against <i>E.coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C	173

45	Effect of pH on the antibacterial activity of Aze 100 μg/ml, 1/2 MIC Amp& their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	175
46	Effect of pH on the antibacterial activity of Aze 100 μg/ml, 1/2 MIC Amp& their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	176
47	Effect of pH on the antibacterial activity of Aze 100 μ g/ml, 1/2 MIC Gen & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	177
48	Effect of pH on the antibacterial activity of Aze 100 μg/ml, 1/2 MIC Gen & their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	178
49	Effect of pH on the antibacterial activity of Cet 100 μg/ml, 1/2 MIC Amp& their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	180
50	Effect of pH on the antibacterial activity of Cet 100 μg/ml, 1/2 MIC Amp& their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	181
51	Effect of pH on the antibacterial activity of Cet 100 μg/ml, 1/2 MIC Gen & their combination against <i>S. aureus</i> Sa ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	182
52	Effect of pH on the antibacterial activity of Cet 100 μg/ml, 1/2 MIC Gen & their combination against <i>E. coli</i> Ec ₁₀₃ isolate by viable count technique at 37°C at A: 3 hr, B: 6hr & C: 24 hr	183
53	Effect of 48 hr pretreatment with 100 μg/ml Aze & Cet on the antibacterial action of 1/2 MIC Amp (A), 1/2 MIC Gen (B), 100 μg/ml Aze & their combinations and 1/2 MIC Amp (C), 1/2 MIC Gen (D), 100 μg/ml Cet & their combinations against Sa ₁₀₃ isolate determined by viable count technique at 24 hr at 37°C	185-186

54	Effect of 48 hr pretreatment with 100 μ g/ml Aze & Cet on the antibacterial action of 1/2 MIC Amp (A), 1/2 MIC Gen (B), 100 μ g/ml Aze & their combinations and1/2 MIC Amp (C), 1/2 MIC Gen (D), 100 μ g/ml Cet & their combinations against Ec ₁₀₃ isolate determined by viable count technique at 24 hr at 37°C	187-188
55	Effect of 30 days pretreatment with 50 μ g/ml Aze & Cet on the antibacterial action of 1/2 MIC Amp (A), 1/2 MIC Gen (B), 100 μ g/ml Aze & their combinations and1/2 MIC Amp (C), 1/2 MIC Gen (D), 100 μ g/ml Cet & their combinations against Sa ₁₀₃ isolate determined by viable count technique at 24 hr at 37°C	190-191
56	Effect of 30 days pretreatment with 50 μ g/ml Aze & Cet on the antibacterial action of 1/2 MIC Amp (A), 1/2 MIC Gen (B), 100 μ g/ml Aze & their combinations and1/2 MIC Amp (C), 1/2 MIC Gen (D), 100 μ g/ml Cet & their combinations against Ec ₁₀₃ isolate determined by viable count technique at 24 hr at 37°C	192-193
57	Effect of 100μg/ml Aze & Cet on the PAE of 1/2 & 2 MIC Amp (A) & Gen (B) against <i>S. aureus</i> Sa ₁₀₃ isolate determined turbidimetrically	195
58	Effect of 100μg/ml Aze & Cet on the PAE of 1/2 & 2 MIC Amp (A) & Gen (B) against <i>E. coli</i> Ec ₁₀₃ isolate determined turbidimetrically	196
59	Effect of 100 μ g/ml Amp (A) & Gen (B) and their combinations with Aze & Cet (200 μ g/ml) on the permeability of artificial cytoplasmic membrane model determined as absorbance of the leaked MB	198
60	UV-Visible spectrophotometric analysis of selected antihistaminic-antibiotic combinations (A) Aze- Gen, (B) Aze-Amp, (C) Cet- Gen & (D) Cet-Amp	200-201