A study of the Relationship between Anthropometric Measures, Blood Gases, and Pulmonary Functions, in a Random Sample of Adult Healthy Egyptians

Thesis

Submitted for partial fulfillment of the master degree in Chest Diseases

By:

Sherehan El Sayed Abdel Aaty M. B., B.Ch

Supervised by

Prof. Mohammed Sherif El Bouhy

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Dr. Gehan Mohamed El Asaal

Ass. Professor. of Chest Diseases Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2013

بيني لِلْهُ الْجَمْزِ الْحِينَ مِ

قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم سورة البقرة آية (32)

Acknowledgement

First and above all, my deepest gratitude and thanks to **Allah** for achieving any work in my life.

Words stand short when coming to express my deep gratitude and great thanks to **Prof. Sherif El Bouhy**Professor of Chest Diseases, Faculty of Medicine Ain Shams University for his continuous encouragement, sincere advice, and co-operation in all steps of this work.

I am deeply grateful to. **Dr. Gehan El Asaal**Ass.Prof of Chest Diseases, Faculty of Medicine Ain
Shams University, who devoted her time, effort and
experience to facilitate the production of this work.

Finally, I'd like to express my profound gratitude and deepest appreciation for my family specially my **Father** and **Mother**.

Sherehan El Sayed Abdel Aaty

List of Contents

	Page
List of Abbreviations	i
List of tables	V
List of figures	viii
Introduction and Aim of The Work	1
Review of literature	4
* Arterial blood gases	4
Arterial sampling	
Indications and contraindications	
Transport	
Selection of site	6
Radial artery puncture technique	12
Complications	14
Blood gas sampling problems	15
Precautions	17
Interpretation of blood gases	21
Classification of the degree of compensation	
Oxygenation status	27
Expected pH	29
The approach of interpretation of arterial blood gases	30
* Pulmonary function tests	33
Indications	33
Limitations	34
Physiological classification of pulmonary dysfunction	34
Mechanical properties of the respiratory system	37
* Spirometry	41
Indications	42
Contraindications	43
Equipment	43
Quality control	44
Procedure	44
Adequacy of the test	45
Interpretations	49
Post bronchodilator test	58

List of Contents (Cont.)

	Page
* Flow volume curve	58
* Diffusion capacity	59
* Lung volumes	60
* Anthropometric body measurements	64
Body mass index	64
Waist circumference	66
Waist to height ratio	67
Waist to hip ratio	67
Sagittal trunck diameter	67
Subjects and Methods	68
Results	74
Discussion	92
Summary	104
Conclusion	106
Recommendations	107
References	108
Arabic Summary	

List of Abbreviations

ABG : Arterial blood gases.

ATS : American thoracic society.

ATS-ERS: American thoracic society- European

respiratory society.

BE : Base excess.

BMI : Body mass index.

cm : Centimeter. °C : Celsius.

 CO_2 : Carbon dioxide.

COPD : Chronic obstructive pulmonary disease.

CT : Coputed tomography.

DEC : Decrease.

DLCO : Diffusing capacity of the lung for carbon

monoxid.

EDTA : Ethylenediaminetetraacetic acid

e.g. : For example

ERV : Expiratory reserve volume. FEF : Forced expiratory flow.

FEF25% : Forced expiratory flow at 25%

FEF25-75%: Forced Expiratory Flow Between 25% and

75% of Forced Vital Capacity.

FEF50%: Forced expiratory flow at 50%. FEF75%: Forced expiratory flow at 75%.

FEV1 : Forced expiratory volume in the first second. FEV1/FEV6: Forced expiratory volume in the first second/

Forced expiratory volume in six seconds.

FEV1/FVC: Forced expiratory volume in one

second/Forced vital capacity.

FEV3 : Forced expiratory volume in three seconds. FEV6 : Forced expiratory volume in six seconds.

FRC : Functional residual capacity.

Ft : Feet.

List of Abbreviations (Cont.)

FVC : Forced vital capacity.

gm : Gram.

H+ : Hydrogen ions.H2CO3 : Carbonic acid.

H2O : Water.

HCO3 : Bicarbonate. HCO₃ : Bicarbonate ion.

HRCT : High resolution computed tomography.

HS: Highly significant. IC: Inspiratory capacity.

In : Inch. Inc : Increase.

IRV : Inspiratory reserve volume.

Kco : Krogh constant

kg/m2 : kilogram/ square meter.

kPa : kilopascal. L : Liter.

L/min : Liters/Minutes. L/S : Liters/Seconds.

LLN : Lower limit of normal.

MDI : Metered-dose inhaler.

MEP : Maximal expiratory pressure.
 mEq/L : Milliequivalents per liter.
 6MWK : Six minute walk test.

MID : Minimally important difference.

Min : Minute

MIP : Maximal inspiratory pressure.

ml : Milliliter. mm : Millimeter.

mmHg : Millimeter of mercury.

List of Abbreviations (Cont.)

mmol/l : Millimoles per Liter.

MVV : Maximal voluntary ventilation.

n : Number.

NHANES III: Third national health & nutrition examination

survey

NHLBI : National Heart, Lung, and Blood Institute

NIH : National institute of health.

NLHEP : National lung health education program.

Nor : Normal.

NS : Non significant.

 O_2 : Oxygen.

 $P(A-a)O_2$: Alveolar to arterial oxygen gradient.

PaCO₂ : Arterial carbon dioxide tension.

PaO2 : Arterial oxygen tension.
 PCO₂ : Carbon dioxide tension.
 PEF : Peak expiratory flow

PEFR : Peak expiratory flow rate.
PFTs : Pulmonary function tests.

pH : Negative logarithm hydrogen ion.

PIF : Peak inspiratory flow.

PO2 : Oxygen tension.

PvCO₂ : Venous carbon dioxide tension.

PvO₂ : Venous oxygen tension.

RV : Residual volume.

S : Significant.

sec : Second.

SaO₂ : Arterial oxygen saturation. SBC : Standardized bicarbonate.

List of Abbreviations (Cont.)

SPSS : Statistical package for Social Science

SD : Standard deviation. So₂ : Oxygen saturation.

SvO₂ : Venous oxygen saturation.

TLC : Total lung capacity.

TV : Tidal volume. units/ml : Units / Milliliter

+ve : Positive.

VC : Vital capacity. -ve : Negative.

W/Ht : Waist/ height.

WC : Waist circumference.WHO : World health organization.

WHR : Waist to hip ratio.

Y : Year. 1st : First

List of Tables

Table	Title	Page
1	Composition of air at sea level	15
2	Normal mixed venous gases	17
3	pH of anticoagulant solutions	18
4	Effects of temperature on normal blood gases	20
5	Normal arterial blood gas values	21
6	Severity of generalized acid-base disturbances	23
7	Classification of metabolic acid-base	26
	component	
8	Classification of PaO2 in adult	28
9	Calculation of expected pH	29
10	represents a summary of changes in PH,	31
	PaCO ₂ , HCO ₃ in acid-base disorders	
11	Lung volumes and capacities	38
12	normal values of pulmonary function tests	54
13	Description of personal and anthropometric	74
	data among study subjects	
14	Description of blood gases among studied	76
	subjects	
15	Description of FEV1, FEV1% predicted, FVC,	76
	FVC% predicted, FEV1/FVC, PEF, and PEF%	
	predicted among study subjects	
16	Description of PFT results among study	77
	subjects	
17	Correlations between each of BMI, WHR and	78
10	blood gases	70
18	Comparison between subjects according to	79
10	their BMI as regard blood gases.	0.0
19	Comparison between subjects according to	80
20	their WHR as regard blood gases	0.0
20	Correlations between each of BMI, WHR and	80
	FEV1, Predicted FEV1 and FEV1% predicted	

List of tables (Cont.)

Table	Title	Page
21	Correlations between each of BMI, WHR and FVC, Predicted FVC, FVC% predicted and FEV1/FVC	81
22	Correlations between each of BMI, WHR and PEF, Predicted PEF, and PEF% predicted	81
23	Comparison between subjects according to their BMI as regard FEV1 and FEV1% predicted	82
24	Comparison between subjects according to their BMI as regard FVC, Predicted FVC, FVC% predicted and FEV1/FVC	83
25	Comparison between subjects according to their BMI as regard PEF, Predicted PEF, and PEF% predicted	84
26	Comparison between subjects according to their BMI as regard PFT results	85
27	Comparison between subjects according to their WHR as regard FEV1, and FEV1% predicted	86
28	Comparison between subjects according to their WHR as regard FVC, Predicted FVC, FVC% predicted and FEV1/FVC	86
29	Comparison between subjects according to their WHR as regard PEF and PEF% predicted	87
30	Comparison between subjects according to their WHR as regard PFT results	87
31	Comparison between subjects according to their sex as regard BMI and WHR	88
32	Comparison between subjects according to their sex as regard blood gases	89

List of tables (Cont.)

Table	Title	Page
33	Comparison between subjects according to their Sex as regard PFT results	89
34	Correlations between age and blood gases	89
35	Correlations between age and each of FEV1, FEV1% predicted, FVC, FVC% predicted, FEV1/FVC, PEF, PEF % predicted	90
36	Relation between PFT result and subjects' age	90
37	Relation between each of BMI, WHR and subjects' age	91

List of Figures

Fig.	Title	Page
1	Modified Allen test	8
2	Puncture of superficial temporal artery	8
3	Anatomy of the right hand and wrist	9
4	Anatomy of brachial artery	9
5	Technique of brachial artery puncture	10
6	Femoral artery anatomy	10
7	Technique of femoral artery puncture	11
8	Axillary artery anatomy	11
9	Technique of axillary artery puncture	12
10	Radial puncture	13
11	Explanation of A.B.G analysis	32
12	Static lung volumes and capacities based on a	39
	volume-time spirogram of an inspiratory vital	
	capacity	
13	Static lung volumes in respiratory disease	40
14	show some problematic examples compared	47
	with will-performed maneuvers	
15	Summary of spirometry standardization	49
	according to ATS	
16	Forced expiratory vital capacity maneuvers	50
17	Normal maximal expiratory and inspiratory	51
	flow-volume curve	
18	Schematic diagram illustrating idealist shape	57
	flow-volume curves and spirograms of	
	obstructive and restrictive and ventilator	
	defect	
19	Volume-time curve and flow volume curve	59
20	Lung volumes and capacities	61

List of Figures (Cont.)

Fig.	Title	Page
21	Description of BMI among studied subjects	75
22	Description of waist to hip ratio among	75
	studied subjects	
23	PFT results among study subjects.	77
24	Comparison between subjects according to	79
	their BMI as regard blood gases	
25	Comparison between subjects according to	82
	their BMI as regard FEV1 and FEV1%	
	predicted.	
26	Comparison between subjects according to	84
	their BMI as regard FVC, Predicted FVC,	
	FVC% predicted and FEV1/FVC	
27	Comparison between subjects according to	85
	their BMI as regard PFT results	
28	Comparison between subjects according to	88
	their WHR as regard PFT results	
29	Relation between PFT result and subjects'	91
	age	

Introduction

Anthropometric measurements of human populations are considered basic information for the assessment of physical characteristics of individual within a given society. Anthropometry of the elderly, is a practical approach to evaluate their nutritional and health status, as well as Anthropometry of the adult sector is needed for biological and health aspect (*National Research Center*, 2008).

One of the anthropometric measures is Body Mass Index (BMI) which is a simple index of weight-for-height that is commonly used to classify underweight, overweight and obesity in adults (*WHO*, 2006). In addition, central obesity is measured by increase in waist circumference or waist-to-hip ratio (WHR) (*Montague & O'Rahilly*, 2000).

In Several studies that examined the relation between obesity and lung function used body mass index (BMI) as a measure of overall adiposity (*Maiolo et al.*, 2003).

Obesity cause various effect on respiratory function in the form of alteration in the respiratory mechanics, decreased respiratory muscle strength, decrease in the pulmonary gas exchange and a limitation in the pulmonary function test. These changes in the lung function tests are due to the accumulation of adipose tissue in the abdominal cavity and the chest wall (*Costa et al.*, 2008).